Journal of Zhejiang University-SCIENCE A

, Volume 7, Issue 11, pp 1790–1799 | Cite as

Performance evaluation of minimum quantity lubrication by vegetable oil in terms of cutting force, cutting zone temperature, tool wear, job dimension and surface finish in turning AISI-1060 steel

  • Khan M. M. A. 
  • Dhar N. R. 
Article

Abstract

In all machining processes, tool wear is a natural phenomenon and it leads to tool failure. The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Metal cutting fluid changes the performance of machining operations because of their lubrication, cooling and chip flushing functions, but the use of cutting fluid has become more problematic in terms of both employee health and environmental pollution. The minimization of cutting fluid also leads to economical benefits by way of saving lubricant costs and workpiece/tool/machine cleaning cycle time. The concept of minimum quantity lubrication (MQL) has been suggested since a decade ago as a means of addressing the issues of environmental intrusiveness and occupational hazards associated with the airborne cutting fluid particles on factory shop floors. This paper deals with experimental investigation on the role of MQL by vegetable oil on cutting temperature, tool wear, surface roughness and dimensional deviation in turning AISI-1060 steel at industrial speed-feed combinations by uncoated carbide insert. The encouraging results include significant reduction in tool wear rate, dimensional inaccuracy and surface roughness by MQL mainly through reduction in the cutting zone temperature and favorable change in the chip-tool and work-tool interaction.

Key words

Minimum quantity lubrication (MQL) Cutting force Chip-tool interface temperature Tool wear Surface roughness Dimensional deviation 

CLC number

TG312 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACGIH, 2001. Documentation of the Threshold Limit Values and Biological Exposure Indices, 6th Edition. Cincinnati, American Conf. of Governmental Industrial Hygienist.Google Scholar
  2. Alexander, A., Varadarajan, A.S., Philip, P.K., 1998. Hard Turning with Minimum Cutting Fluid: A Viable Green Alternative on the Shop Floor. Proc. of the 18th AIMTDR, p. 152–155.Google Scholar
  3. Aronson, R.B., 1995. Why dry machining. Manf. Engineering, 114:33–36.Google Scholar
  4. Byrne, G., Scholta, E., 1993. Environmentally clean machining processes—A strategic approach. Annals of CIRP, 42(1):471–474.CrossRefGoogle Scholar
  5. Cassin, C., Boothroyed, G., 1965. Lubrication action of cutting fluids. J. Mech. Eng. Science, 7(1):67–81.CrossRefGoogle Scholar
  6. Coelho, R.T., Yamada, S., Aspinwall, D.K., Wise, M.L.H., 1995. The application of polycrystalline diamond (PCD) tool materials when drilling and reaming aluminum based alloys including MMC. Int. J. Mach. Tools Manuf., 35(5):761–774. [doi:10.1016/0890-6955(95)93044-7]CrossRefGoogle Scholar
  7. Derflinger, V., Brändle, H., Zimmermann, H., 1999. New hard/lubricant coating for dry machining. Surface and Coating Technology, 113(3):286–292. [doi:10.1016/S0257-8972(99)00004-3]CrossRefGoogle Scholar
  8. Dhar, N.R., Islam, S., 2005. Improvement in Machinability Characteristics and Working Environment by Minimum Quantity Lubrication. CASR Project, BUET.Google Scholar
  9. Dhar, N.R., Islam, M.W., Islam, S., Mithu, M.A.H., 2006. The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. Journal of Materials Processing Technology, 171(1):93–99. [doi:10.1016/j.jmatprotec.2005.06.047]CrossRefGoogle Scholar
  10. Ferraresi, D., 1974. Usinagem dos Metais. ABM, Saõ Paulo, p.85.Google Scholar
  11. Heisel, U., Lutz, M., Spath, D., Wassmer, R., Walter, U., 1994. Application of minimum quantity cooling lubrication technology in cutting processes. Prod. Engineering, II(1):49–54.Google Scholar
  12. Honma, H., Yokogawa, K., Yokogawa, Y., 1996. Study of environment conscious CBN cooling air grinding technology. J. JSPE, 62(11):1638–1642.Google Scholar
  13. Hörner, D., 1997. Cooling Lubricants for Minimum Quantity Lubrication. VDI Conference, p.203. http://www.engn.umich.edu/alumni/engineer/03FW/research/holography/index.html.
  14. Itoigawa, F., Childs, T.H.C., Nakamuraa, T., Belluco, W., 2005. Effects and mechanisms in minimal quantity lubrication machining of an aluminum alloy. Wear, 260:339–344. [doi:10.1016/j.wear.2005.03.035]CrossRefGoogle Scholar
  15. Klocke, F., Eisenblätter, G., 1997a. Machinability investigation of the drilling process using minimal cooling lubrication techniques. Annals of CIRP, 46(1):19–24.CrossRefGoogle Scholar
  16. Klocke, F., Eisenblätter, G., 1997b. Dry cutting. Annals of CIRP, 46(2):519–525.CrossRefGoogle Scholar
  17. Klocke, F., Eisenblätter, G., 1999. Coated tools for metal cutting-features and applications. Annals of CIRP, 48(2):515–525.CrossRefGoogle Scholar
  18. Krahenbuhl, U., 2005. Vegetable Oil-based Coolants Improve Cutting Performance. http://www.manufacturingcentre.com/tooling/archives/1202/1202oil.asp.
  19. Lahres, M., Doerfel, O., Neumüller, R., 1999. Applicability of different hard coatings in dry machining an austenitic steel. Surface and Coatings Technology, 120–121(1): 687–691. [doi:10.1016/S0257-8972(99)00359-X]CrossRefGoogle Scholar
  20. Leskover, P., Grun, J., 1986. The metallurgical aspect of machining. Annals of CIRP, 35(1):537–550.CrossRefGoogle Scholar
  21. Lugscheider, E., Knotek, O., Barimani, C., Leyendecker, T., Lemmer, O., Wenke, R., 1997. Investigations on hard coated reamers in different lubricant free cutting operations. Surface and Coatings Technology, 90(1–2):172–177. [doi:10.1016/S0257-8972(96)03114-3]CrossRefGoogle Scholar
  22. Machado, A.R., Wallbank, J., 1997. The effect of extremely low lubricant volumes in machining. Wear, 210(1–2):76–82. [doi:10.1016/S0043-1648(97)00059-8]CrossRefGoogle Scholar
  23. MaClure, T.F., Adams, R., Gugger, M.D., 2001. Comparison of Flood vs Microlubrication on Machining Performance. http://www.unist.com/techsolve.html.
  24. Mazurkiewicz, M., Kubala, Z., Chow, J., 1989. Metal machining with high pressure water-jet cooling assistance—A new possibility. J. Eng. Ind., 111:7–12.CrossRefGoogle Scholar
  25. Paul, S., Dhar, N.R., Chattopadhyay, A.B., 2000. Beneficial Effects of Cryogenic Cooling over Dry and Wet Machining on Tool Wear and Surface Finish in Turning AISI 1060 Steel. Proc. of the ICAMT-2000, Malaysia, p.209–214.Google Scholar
  26. Sefrin, H., 1999. Minimum quantity lubrication, application experience in practice. Tribology and Lubrication Engineering, 46(3):261–266.Google Scholar
  27. Shaw, M.C., Piott, J.D., Richardson, L.P., 1951. Effect of cutting fluid upon chip-tool interface temperature. Trans. ASME, 71:45–56.Google Scholar
  28. Skerlos, S., Hayes, K., 2003. Vegetable-based Cutting Fluids: A New Dimension in Research. http://www.engn.umich.edu/alumni/engineer/03FW/research/holography/index.html.
  29. Sokovic, M., Mijanovic, K., 2001. Ecological aspects of the cutting fluids and its influence on quantifiable parameters of the cutting processes. Journal of Materials Processing Technology, 109(1–2):181–189. [doi:10.1016/S0924-0136(00)00794-9]CrossRefGoogle Scholar
  30. Stäbler, D., Schönwald, M., Sefrin, H., Wolf, M., 2003. Hazard Evaluation at the Dry Tooling of Metallic Materials. Final Project Report of the Süddeutsche Metall-Berufsgenossenschaft.Google Scholar
  31. Suda, S., 2001. Evaluation of Machinability with MQL System and Effectiveness in Production Lines. Proc. of the Int. Tribology Conf., Nagasaki, p.203–208.Google Scholar
  32. Sutherland, J.W., 2000. An experimental investigation of air quality in wet and dry turning. Annals of CIRP, 49(1):61–64.CrossRefGoogle Scholar
  33. Tönshoff, H.K., Brinkomeier, E., 1986. Determination of the mechanical and thermal influences on machined surface by microhardness and residual stress analysis. Annals of CIRP, 35(2):519–532.Google Scholar
  34. Tönshoff, H.K., Spintig, W., 1994. Machining of holes developments in drilling technology. Annals of CIRP, 43(2):551–561.CrossRefGoogle Scholar
  35. Varadarajan, A.S., Philip, P.K., Ramamoorthy, B., 2002. Investigations on hard turning with minimal cutting fluid application (HTMF) and its comparison with dry and wet turning. Int. J. Mach. Tools Manuf., 42(2):193–200. [doi:10.1016/S0890-6955(01)00119-5]CrossRefGoogle Scholar
  36. Wakabayashi, T., Sato, H., Inasaki, I., 1998. Turning using extremely small amount of cutting fluid. JSME Int. J., 41(1):143–148.CrossRefGoogle Scholar

Copyright information

© Zhejiang University 2006

Authors and Affiliations

  • Khan M. M. A. 
    • 1
  • Dhar N. R. 
    • 2
  1. 1.Department of Industrial and Production EngineeringShahajalal University of Science and TechnologySylhetBangladesh
  2. 2.Department of Industrial and Production EngineeringBangladesh University of Engineering and Technology (BUET)DhakaBangladesh

Personalised recommendations