Journal of Zhejiang University-SCIENCE A

, Volume 7, Issue 10, pp 1723–1732 | Cite as

Robust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model

  • Su Cheng-li 
  • Wang Shu-qing 
Article

Abstract

An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem involving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.

Key words

Uncertain Takagi-Sugeno fuzzy model Time-delay Model predictive control (MPC) Linear matrix inequalities (LMIs) Robustness 

CLC number

TP273 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in System and Control Theory. SIAM. Philadelphia.CrossRefMATHGoogle Scholar
  2. Cao, Y.Y., Frank, P.M., 2000. Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Transactions on Fuzzy Systems, 8(2):200–211. [doi:10.1109/91.842153]CrossRefGoogle Scholar
  3. Casavola, A., Famularo, D., Franze, G., 2004. Robust constrained predictive control of uncertain norm-bounded linear systems. Automatica, 40(11):1865–1876. [doi:10.1016/j.automatica.2004.05.016]MathSciNetCrossRefMATHGoogle Scholar
  4. Hu, X.B., Chen, W.H., 2004. Model predictive control for constrained systems with uncertain state-delays. International Journal of Robust and Nonlinear Control, 14(17):1421–1432. [doi:10.1002/rnc.963]MathSciNetCrossRefMATHGoogle Scholar
  5. Kothare, M.V., Balakrishnan, V., Morari, M., 1996. Robust constrained model predictive control using linear matrix inequalities. Automatica, 32(10):1361–1379. [doi:10.1016/0005-1098(96)00063-5]MathSciNetCrossRefMATHGoogle Scholar
  6. Li, P., Wendt, M., Wozny, G., 2000. Robust model predictive control under chance constraints. Computers and Chemical Engineering, 24:829–834. [doi:10.1016/S0098-1354(00)00398-7]CrossRefGoogle Scholar
  7. Matko, D., Kavsek-Biasizzo, K., Skrjanc, I., Music, G., 2000. Generalized Predictive Control of a Thermal Plant Using Fuzzy Model. American Control Conference. Chicago, Illinois, 3:2053–2057. [doi:10.1109/ACC.2000.879562]Google Scholar
  8. Mollov, S., Babuska, R., Abonyi, J., Verbruggen, H.B., 2004. Effective optimization for fuzzy model predictive control. IEEE Transactions on Fuzzy Systems, 12(5):661–675. [doi:10.1109/TFUZZ.2004.834812]CrossRefGoogle Scholar
  9. Nounou, H.N., Passino, K.M., 1999. Fuzzy Model Predictive Control: Techniques, Stability Issues, and Examples. Proceedings of the IEEE International Symposium on Intelligent Control. Cambridge, MA, p.423–428. [doi:10.1109/ISIC.1999.796692]Google Scholar
  10. Oblak, S., Skrjanc, I., 2005. Multivariable Fuzzy Predictive Functional Control of a Mimo Nonlinear System. Proceedings of the IEEE International Symposium on Intelligent Control. Limassol, Cyprus, p.1029–1034. [doi:10.1109/.2005.1467155]Google Scholar
  11. Sarimveis, H., Bafas, G., 2003. Fuzzy model predictive control of non-linear processes using genetic algorithms. Fuzzy Sets and Systems, 139 (1):59–80. [doi:10.1016/S0165-0114(02)00506-7]MathSciNetCrossRefMATHGoogle Scholar
  12. Takagi, T., Sugeno, M., 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15:116–132.CrossRefMATHGoogle Scholar
  13. Wang, R.J., Lin, W.W., Wang, W.J., 2004. Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(2):1288–1292. [doi:10.1109/TSMCB.2003.818437]CrossRefGoogle Scholar
  14. Yan, F., Hu, P.H., 2004. State Feedback Model Predictive Control to Complex Systems with Multi-time Delays. Proceedings of the 5th World Congress on Intelligent Control and Automation. Hangzhou, China, p.946–950. [doi:10.1109/WCICA.2004.1340749]Google Scholar
  15. Zheng, F., Wang, Q.G., Lee, T.H., 2005. Adaptive robust control of uncertain time delay systems. Automatica, 41(8):1375–1383. [doi:10.1016/j.automatica.2005.03.014]MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Zhejiang University 2006

Authors and Affiliations

  • Su Cheng-li 
    • 1
  • Wang Shu-qing 
    • 1
  1. 1.National Laboratory of Industrial Control Technology, Institute of Advanced Process ControlZhejiang UniversityHangzhouChina

Personalised recommendations