Journal of Zhejiang University-SCIENCE A

, Volume 7, Issue 7, pp 1275–1281 | Cite as

Automatic target tracking on multi-resolution terrain

  • Wan Ming 
  • Zhang Wei 
  • Murray Marie O. 
  • Kaufman Arie 
Article
  • 26 Downloads

Abstract

We propose a high-performance path planning algorithm for automatic target tracking in the applications of real-time simulation and visualization of large-scale terrain datasets, with a large number of moving objects (such as vehicles) tracking multiple moving targets. By using a modified Dijkstra’s algorithm, an optimal path between each vehicle-target pair over a weighted grid-presented terrain is computed and updated to eliminate the problem of local minima and losing of tracking. Then, a dynamic path re-planning strategy using multi-resolution representation of a dynamic updating region is proposed to achieve high-performance by trading-off precision for efficiency, while guaranteeing accuracy. Primary experimental results showed that our algorithm successfully achieved 10 to 96 frames per second interactive path-replanning rates during a terrain simulation scenario with 10 to 100 vehicles and multiple moving targets.

Key words

Target tracking Path planning Dijkstra’s algorithm Voxel-based modeling Multi-resolution terrain Real-time visualization and simulation 

CLC number

TP39 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen-Or, D., Rich, E., Lerner, U., Shenkar, V., 1996. A real-time photo-realistic visual flythrough. IEEE Transactions on Visualization and Computer Graphics, 2(3):255–265. [doi:10.1109/2945.537308]CrossRefGoogle Scholar
  2. Dijkstra, E., 1959. A note on two problems in connexion the graphs. Numerische Mathematik, 1(1):269–271. [doi:10.1007/BF01386390]MathSciNetCrossRefMATHGoogle Scholar
  3. Hoppe, H., 1998. Smooth View-Dependent Level-of-Detail Control and Its Application to Terrain Rendering. Proc. IEEE Visualization Conference, p.35–42.Google Scholar
  4. Khatib, O., 1986. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1):90–98.MathSciNetCrossRefGoogle Scholar
  5. Latombe, J., 1991. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA.CrossRefMATHGoogle Scholar
  6. Latombe, J., 1999. Motion planning: a journey of robots, molecules, digital actors, and other artifacts. International Journal of Robotics Research, Special Issue on Robotics at the Millennium—Part I, 18(11):1119–1128.Google Scholar
  7. Wan, M., Qu, H., Kaufman, A., 1999. Virtual Flythrough over Voxel-Based Terrain. Proc. IEEE Virtual Reality Conference, p.53–60.Google Scholar
  8. Wan, M., Dachille, F., Kaufman, A., 2001. Distance-Field Based Skeletons for Virtual Navigation. Proc. IEEE Visualization Conference, p.239–245.Google Scholar
  9. Xia, J., El-Sana, J., Varshney, A., 1997. Adaptive real-time level-of-detail-based rendering for polygonal models. IEEE Transactions on Visualization and Computer Graphics, 3(2):171–183. [doi:10.1109/2945.597799]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Wan Ming 
    • 1
  • Zhang Wei 
    • 1
  • Murray Marie O. 
    • 1
  • Kaufman Arie 
    • 2
  1. 1.The Boeing CompanySeattleUSA
  2. 2.Department of Computer Science and Center for Visual ComputingState University of New York at Stony BrookStony BrookUSA

Personalised recommendations