Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 7, Issue 7, pp 1115–1123 | Cite as

An efficient method for tracing planar implicit curves

  • Yu Zheng-sheng 
  • Cai Yao-zhi 
  • Oh Min-jae 
  • Kim Tae-wan 
  • Peng Qun-sheng 
Article

Abstract

This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new function F(x, y)=0 where the same curve with f(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)>0 and F(x, y)<0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot C0 planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.

Key words

Planar implicit curve Curve tracing Continuation method Geometric modeling 

CLC number

TP39 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnhill, R.E., Farin, G., Jordan, M., Piper, B.R., 1987. Surface/surface intersection. Computer Aided Geometric Design, 4(1–2):3–16. [doi:10.1016/0167-8396(87)90020-3]MathSciNetCrossRefMATHGoogle Scholar
  2. Bresenham, J.E., 1965. Algorithm for computer control of a digital plotter. IBM Systems Journal, 4(1):25–30.CrossRefGoogle Scholar
  3. Bresenham, J.E., 1977. A linear algorithm for incremental digital display of circular arcs. Comm. ACM, 20(2):100–106. [doi:10.1145/359423.359432]CrossRefMATHGoogle Scholar
  4. Cai, Y.Z., 1990. Numerical Control Rendering Using Positive-negative Method. Zhejiang University Press, Hangzhou.Google Scholar
  5. Chandler, R.E., 1988. A tracking algorithm for implicitly defined curves. IEEE Computer Graphics and Applications, 8(2):83–89. [doi:10.1109/38.506]MathSciNetCrossRefGoogle Scholar
  6. Cohen, E., 1976. A method for plotting curves defined by implicit equation. Computer Graphics (SIGGRAPH’76), 10(2):263–265. [doi:10.1145/965143.563321]CrossRefGoogle Scholar
  7. Lennon, W.J., Jordan, B.W., Holm, B.C., 1973. An improved algorithm for the generation of nonparametric curves. IEEE Transactions on Computers, C-22:1052–1060.CrossRefMATHGoogle Scholar
  8. Lopes, H., Oliverira, J.B., de Figueiredo, L.H., 2002. Robust adaptive polygonal approximation of implicit curves. Computer & Graphics, 26(6):841–852. [doi:10.1016/S0097-8493(02)00173-5]CrossRefGoogle Scholar
  9. Martin, R., Shou, H., Voiculescu, I., Bowyer, A., Wang, G., 2002. Comparison of interval methods for plotting algebraic curves. Computer Aided Geometric Design, 19(7):553–587. [doi:10.1016/S0167-8396(02)00146-2]MathSciNetCrossRefMATHGoogle Scholar
  10. Shou, H.H., Martin, R.R., Wang, G.J., Bowyer, A., Voiculescu, I., 2005. A Recursive Taylor Method for Algebraic Curves and Surfaces. In: Dokken, T., Jüttler, B. (Eds.), Computational Methods for Algebraic Spline Surface (COMPASS). Springer, p. 135–155.Google Scholar
  11. van Aken, J., 1984. An efficient ellipse-drawing algorithm. IEEE Computer Graphics and Applications, 3:24–35.CrossRefGoogle Scholar
  12. van Aken, J., Novak, M., 1985. Curve-drawing algorithms for raster displays. ACM Transactions on Graphics, 4(2):147–169. [doi:10.1145/282918.282943]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Yu Zheng-sheng 
    • 1
    • 2
  • Cai Yao-zhi 
    • 3
  • Oh Min-jae 
    • 2
  • Kim Tae-wan 
    • 2
  • Peng Qun-sheng 
    • 4
  1. 1.Computer Science SchoolHangzhou Dianzi UniversityHangzhouChina
  2. 2.Department of Naval Architecture and Ocean EngineeringSeoul National UniversitySeoulKorea
  3. 3.Applied Mathematics DepartmentZhejiang UniversityHangzhouChina
  4. 4.State Key Laboratory of CAD & CGZhejiang UniversityHangzhouChina

Personalised recommendations