Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 7, Issue 3, pp 335–339 | Cite as

General solutions for special orthotropic piezoelectric media

  • Li Xiang-yong  (李相勇)
  • Wang Min-zhong  (王敏中)
Article

Abstract

This paper presents the forms of the general solution for general anisotropic piezoelectric media starting from the basic equations of piezoelasticity by using the operator method introduced by Lur’e (1964), and gives the analytical form of the general solution for special orthotropic piezoelectric media. This paper uses the non-uniqueness of the general solution to obtain the generalized LHN solution and the generalized E-L solution for special orthotropic piezoelectric media. When the special orthotropic piezoelectric media degenerate to transversely piezoelectric media, the solution given by this paper degenerates to the solution for transversely isotropic piezoelectric media accordingly, so that this paper generalized the results in transversely isotropic piezoelectric media.

Key words

Special orthotropic piezoelectric media LHZ solution E-L solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ding, H.J., Chen, B., Liang, J., 1996. General solutions for coupled equations for piezoelectric media. International Journal of Solids and Structures, 33(18):2283–2298. [doi:10.1016/0020-7683(95)00171-9]MATHGoogle Scholar
  2. Ding, H.J., Chen, B., Liang, J., 1997a. On the Green’s functions for two-phase transversely isotropic piezoelectric media. International Journal of Solids and Structures, 34(16):3041–3057. [doi:10.1016/S0020-7683(96)00132-1]CrossRefMATHGoogle Scholar
  3. Ding, H.J., Wang, G.Q., Chen, W.Q., 1997b. General solution of plane problem of piezoelectric media expressed by “harmonic functions”. Applied Mathematics and Mechanics, 18(8):757–764. [doi:10.1007/BF00763127]MathSciNetCrossRefMATHGoogle Scholar
  4. Ding, H.J., Wang, G.Q., Chen, W.Q., 1997c. Green’s functions for a two-phase infinite piezoelectric plane. Proceedings of the Royal Society of London, Series A, 453:2241–2257.MathSciNetCrossRefMATHGoogle Scholar
  5. Lur’e, A.I., 1964. Three-dimensional Problems of the Theory of Elasticity. Interscience Publishers, New York.MATHGoogle Scholar
  6. Xu, S.P., 2005. General Solution of Piezoelasticity and its Applications in Thick Plate Problems. Ph.D Thesis, Peking University, Beijing, China (in Chinese).Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Li Xiang-yong  (李相勇)
    • 1
  • Wang Min-zhong  (王敏中)
    • 1
  1. 1.Department of Mechanics and Engineering SciencePeking UniversityBeijingChina

Personalised recommendations