Skip to main content
Log in

Beam steering in planar photonic crystal based on its anomalous dispersive properties

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

We utilize the anomalous dispersion of planar photonic crystals near the dielectric band edge to control the wavelength-dependent propagation of light. We typically observe an angular swing of up to 10° as the input wavelength is changed from 1290 nm to 1310 nm, which signifies an angular dispersion of 0.5°/nm (“Superprism” phenomenon). Such a strong angular dispersion is of the order required for WDM systems. By tuning the incident angle, light beams with up to 20° divergence were collimated over a 25 nm (1285 nm to 1310 nm) bandwidth using a triangular lattice (“Supercollimator” phenomenon). The wavelength collimating range can be extended from 25 nm to 40 nm by changing the lattice from triangular to square. These two devices can be realized in the same configuration, simply by tuning the wavelength. Sources of loss are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baba, T., Ohsaki, D., 2001. Interfaces of photonic crystals for high efficiency light transmission. Jpn. J. Appl. Phys., 40:5920–5924, Part 1. [doi:10.1143/JJAP.40.5920]

    Article  Google Scholar 

  • Baba, T., Nakamura, M., 2002. Photonic crystal light deflection devices using the superprism effect. IEEE J. Quan. Electron., 38:908–914.

    Google Scholar 

  • Jugessur, A.S., Bakhtazad, A., Wu, L., Kirk, A., Krauss, T.F., de la Rue, R.M., 2005. A compact and integrated 2-D photonic crystal superprism filter-device for wavelength demultiplexing applications. Submitted.

  • Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S., 1998. Superprism phenomena in photonic crystals. Phys. Rev. B, 58:R10096–R10099. [doi:10.1103/PhysRevB.58.R10096]

    Article  Google Scholar 

  • Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S., 1999a. Superprism phenomena in photonic crystals: Toward microscale lightwave circuits. J. Lightwar Technol., 17:2032–2038. [doi:10.1109/50.802991]

    Article  Google Scholar 

  • Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S., 1999b. Self-collimating phenomena in photonic crystals. Appl. Phys. Lett., 74:1212–1214. [doi:10.1063/1.123502]

    Article  Google Scholar 

  • Kosaka, H., Kawashima, T., Tomita, A., Sato, T., Kawakami, S., 2000. Photonic-crystal spot-size converter. Appl. Phys. Lett., 76:268–270. [doi:10.1063/1.125743]

    Article  Google Scholar 

  • Krauss, T.F., de la Rue, R.M., Brand, S., 1996. Two-dimensional photonic-bandgap structures operating at nearinfrared wavelengths. Nature, 383:699–702. [doi:10.1038/383699a0]

    Article  Google Scholar 

  • Notomi, M., 2000. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behaviour in the vicinity of the photonic band gap. Phys. Rev. B, 62:10696–10705. [doi:10.1103/PhysRevB.62.10696]

    Article  Google Scholar 

  • Witzens, J., Loncar, M., Acherer, A., 2002. Self-collimation in planar photonic crystals. IEEE J. Selected Topics in Quantum Electron., 8:1246–1257. [doi:10.1109/JSTQE.2002.806693]

    Article  Google Scholar 

  • Witzens, J., Baehr-Jones, T., Scherer, A., 2005. Hybrid superprism with low insertion losses and suppressed cross-talk. Phys. Rev. E, 71:026604. [doi:10.1103/PhysRevE.71.026604]

    Article  Google Scholar 

  • Wu, L., Mazilu, M., Karle, T., Krauss, T.F., 2002. Superprism phenomena in planar photonic crystals. IEEE J. Quan. Electron., 38:915–918. [doi:10.1109/JQE.2002.1017607]

    Article  Google Scholar 

  • Wu, L., Mazilu, M., Krauss, T.F., 2003a. Beam steering in planar-photonic crystals: From superprism to supercollimator. J. Lightwave Tech., 21:561–566. [doi:10.1109/JLT.2003.808773]

    Article  Google Scholar 

  • Wu, L., Mazilu, M., Gallet, J.F., Krauss, T.F., 2003b. Square lattice photonic-crystal collimator. Photonics and Nanostructures-Fundamentals and Applications, 1:31–36. [doi:10.1016/S1569-4410(03)00004-X]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Lj., Mazilu, M., Gallet, J.F. et al. Beam steering in planar photonic crystal based on its anomalous dispersive properties. J. Zhejiang Univ. - Sci. A 7, 45–54 (2006). https://doi.org/10.1631/jzus.2006.A0045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.A0045

Key words

Document code

CLC number

Navigation