Journal of Zhejiang University-SCIENCE A

, Volume 7, Issue 1, pp 45–54 | Cite as

Beam steering in planar photonic crystal based on its anomalous dispersive properties

  • Wu Li-jun 
  • Mazilu M. 
  • Gallet J. F. 
  • Krauss T. F. 


We utilize the anomalous dispersion of planar photonic crystals near the dielectric band edge to control the wavelength-dependent propagation of light. We typically observe an angular swing of up to 10° as the input wavelength is changed from 1290 nm to 1310 nm, which signifies an angular dispersion of 0.5°/nm (“Superprism” phenomenon). Such a strong angular dispersion is of the order required for WDM systems. By tuning the incident angle, light beams with up to 20° divergence were collimated over a 25 nm (1285 nm to 1310 nm) bandwidth using a triangular lattice (“Supercollimator” phenomenon). The wavelength collimating range can be extended from 25 nm to 40 nm by changing the lattice from triangular to square. These two devices can be realized in the same configuration, simply by tuning the wavelength. Sources of loss are discussed.

Key words

Planar photonic crystals Superprism Supercollimator Anomalous dispersive properties 

Document code

CLC number

O441 TN204 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baba, T., Ohsaki, D., 2001. Interfaces of photonic crystals for high efficiency light transmission. Jpn. J. Appl. Phys., 40:5920–5924, Part 1. [doi:10.1143/JJAP.40.5920]CrossRefGoogle Scholar
  2. Baba, T., Nakamura, M., 2002. Photonic crystal light deflection devices using the superprism effect. IEEE J. Quan. Electron., 38:908–914.Google Scholar
  3. Jugessur, A.S., Bakhtazad, A., Wu, L., Kirk, A., Krauss, T.F., de la Rue, R.M., 2005. A compact and integrated 2-D photonic crystal superprism filter-device for wavelength demultiplexing applications. Submitted.Google Scholar
  4. Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S., 1998. Superprism phenomena in photonic crystals. Phys. Rev. B, 58:R10096–R10099. [doi:10.1103/PhysRevB.58.R10096]CrossRefGoogle Scholar
  5. Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S., 1999a. Superprism phenomena in photonic crystals: Toward microscale lightwave circuits. J. Lightwar Technol., 17:2032–2038. [doi:10.1109/50.802991]CrossRefGoogle Scholar
  6. Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S., 1999b. Self-collimating phenomena in photonic crystals. Appl. Phys. Lett., 74:1212–1214. [doi:10.1063/1.123502]CrossRefGoogle Scholar
  7. Kosaka, H., Kawashima, T., Tomita, A., Sato, T., Kawakami, S., 2000. Photonic-crystal spot-size converter. Appl. Phys. Lett., 76:268–270. [doi:10.1063/1.125743]CrossRefGoogle Scholar
  8. Krauss, T.F., de la Rue, R.M., Brand, S., 1996. Two-dimensional photonic-bandgap structures operating at nearinfrared wavelengths. Nature, 383:699–702. [doi:10.1038/383699a0]CrossRefGoogle Scholar
  9. Notomi, M., 2000. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behaviour in the vicinity of the photonic band gap. Phys. Rev. B, 62:10696–10705. [doi:10.1103/PhysRevB.62.10696]CrossRefGoogle Scholar
  10. Witzens, J., Loncar, M., Acherer, A., 2002. Self-collimation in planar photonic crystals. IEEE J. Selected Topics in Quantum Electron., 8:1246–1257. [doi:10.1109/JSTQE.2002.806693]CrossRefGoogle Scholar
  11. Witzens, J., Baehr-Jones, T., Scherer, A., 2005. Hybrid superprism with low insertion losses and suppressed cross-talk. Phys. Rev. E, 71:026604. [doi:10.1103/PhysRevE.71.026604]CrossRefGoogle Scholar
  12. Wu, L., Mazilu, M., Karle, T., Krauss, T.F., 2002. Superprism phenomena in planar photonic crystals. IEEE J. Quan. Electron., 38:915–918. [doi:10.1109/JQE.2002.1017607]CrossRefGoogle Scholar
  13. Wu, L., Mazilu, M., Krauss, T.F., 2003a. Beam steering in planar-photonic crystals: From superprism to supercollimator. J. Lightwave Tech., 21:561–566. [doi:10.1109/JLT.2003.808773]CrossRefGoogle Scholar
  14. Wu, L., Mazilu, M., Gallet, J.F., Krauss, T.F., 2003b. Square lattice photonic-crystal collimator. Photonics and Nanostructures-Fundamentals and Applications, 1:31–36. [doi:10.1016/S1569-4410(03)00004-X]Google Scholar

Copyright information

© Zhejiang University Press 2006

Authors and Affiliations

  • Wu Li-jun 
    • 1
    • 2
  • Mazilu M. 
    • 1
  • Gallet J. F. 
    • 1
  • Krauss T. F. 
    • 1
  1. 1.The Ultrafast Photonics Collaboration School of Physics & AstronomyUniversity of St. AndrewsScotlandUK
  2. 2.Department of PhysicsHong Kong University of Science and TechnologyHong KongChina

Personalised recommendations