Journal of Zhejiang University SCIENCE B

, Volume 6, Issue 12, pp 1170–1175 | Cite as

Evaluation of ST13 gene expression in colorectal cancer patients

  • Dong Qing-hua  (董庆华)
  • Zheng Shu  (郑树)
  • Hu Yue  (胡跃)
  • Chen Gong-xing  (陈功星)
  • Ding Jia-yi  (丁佳逸)


We identified a novel gene ST13 from a subtractive cDNA library of normal intestinal mucosa in 1993, more studies showed that ST13 was a co-chaperone of Hsp70s. Recently we detected the ST13 gene expression in tumor tissue and adjacent normal tissue of the same colorectal cancer patient and investigated if the ST13 gene expression might have any prognostic value. Analysis was performed at molecular level by reverse transcription-PCR using real-time detection method. We measured two genes simultaneously, ST13 as the target gene and glyceraldehydes-3-phosphate dehydrogenase as a reference gene, in primary colorectal tumor specimens and tumor-adjacent normal mucosa specimens from 50 colorectal cancer patients. The expression levels of the ST13 gene were significantly decreased in primary tumors compared with adjacent mucosa (P<0.05). But there were no significant differences in the expression of ST13 as compared with different Dukes’ stage, tumor differentiation grade, invasion depth, lymph node metastasis and disease-specific survival.

Key words

ST13 Colorectal cancer Real-time PCR 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballinger, C.A., Connell, P., Wu, Y., Hu, Z., Thompson, L.J., Yin, L.Y., Patterson, C., 1999. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell Biol., 19(6):4535–4545.PubMedGoogle Scholar
  2. Bruce, B.D., Churchich, J., 1997. Characterization of the molecular-chaperone function of the heat-shock-cognate-70-interacting protein. Eur. J. Biochem., 245:738–744. doi:10.1111/j.1432-1033.1997.00738.x.PubMedCrossRefGoogle Scholar
  3. Bukau, B., Horwich, A.L., 1998. The Hsp70 and Hsp60 chaperone machines. Cell, 92:351–366. doi:10.1016/S0092-8674(00)80928-9.PubMedCrossRefGoogle Scholar
  4. Dundas, S.R., Lawrie, L.C., Rooney, P.H., Murray, J.I., 2005. Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J. Pathol., 205(1):74–81. doi:10.1002/path.1672.PubMedCrossRefGoogle Scholar
  5. Fan, J.H., Yang, W., Sai, J., Richmond, A., 2002. Hsc/Hsp70 interacting protein (Hip) associates with CXCR2 and regulates the receptor signaling and trafficking. J. Bio. Chem., 277(8):6590–6597. doi:10.1074/jbc.M110588200CrossRefGoogle Scholar
  6. Gelmini, S., Orlando, C., Sestini, R., Vona, J., Pinzani, P., Giacca, M., Pazzagali, M., 1997. Quantitative polymerase chain reaction-based homogeneous assay with fluorogenic probe to measure c-erB-2 oncogene amplification. Clinical Chemistry, 43(5):752–758.PubMedGoogle Scholar
  7. Hartl, F.U., 1996. Molecular chaperones in cellular protein folding. Nature, 381:571–580. doi:10.1038/381571a0.PubMedCrossRefGoogle Scholar
  8. Hohfeld, J., Jentsch, S., 1997. GrpE-like regulation of the Hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J., 16:6209–6216. doi:10.1093/emboj/16.20.6209.PubMedCrossRefGoogle Scholar
  9. Hohfeld, J., Minami, Y., Hartl, F.U., 1995. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell, 83:589–598. doi:10.1016/0092-8674(95)90099-3.PubMedCrossRefGoogle Scholar
  10. Irmen, H., Hohfeld, J., 1997. Characterization of functional domains of the eukaryotic co-chaperone Hip. J. Bio. Chem., 272(4):2230–2235. doi:10.1074/jbc.272.4.2230.CrossRefGoogle Scholar
  11. Jemal, A., Tiwari, R.C., Murray, T., Ghafoor, A., Samuels, A., Ward, E., Feuer, E.J., Thun, M.J., 2004. American cancer society. Cancer statistics. CA Cancer J. Clin., 54(1):8–29.PubMedCrossRefGoogle Scholar
  12. Kikuchi, R., Noguchi, T., Takeno, S., Funada, Y., Moriyama, H., Uchida, Y., 2002. Nuclear BAG-1 expression reflects malignant potential in colorectal carcinomas. Br. J. Cancer, 87(10):1136–1139. doi:10.1038/sj.bjc.6600579.PubMedCrossRefGoogle Scholar
  13. Lazaris, A.C., Theodoropoulos, G.E., Davaris, P.S., Panoussopoulos, D., Nakopoulous, Z., Ittas, C., Golematis, B.C., 1995. Heat shock protein 70 and HLA-DR molecules tissue expression. Prognostic implications in colorectal cancer. Dis. Colon. Rectum., 38(7):739–745. doi:10.1007/BF02048033.PubMedCrossRefGoogle Scholar
  14. Mo, Y.Q., Zheng, S., Shen, D.J., 1996. Differential expression of HSU17714 gene in colorectal cancer and normal colonic mucosa. Chinese Journal of Oncology, 18(4):241–243 (in Chinese).PubMedGoogle Scholar
  15. Nollen, E.A., Kabakov, A.E., Brunsting, J.F., Kanon, B., Hohfeld, J., Kampinga, H.H., 2001. Modulation of in vivo Hsp70 chaperone activity by Hip and BAG-1. J. Biol. Chem., 276:4677–4682. doi:10.1074/jbc.M009745200.PubMedCrossRefGoogle Scholar
  16. Nylandsted, J., Rohde, M., Brand, K., Bastholm, L., Elling, F., Jaattela, M., 2000. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspase and bypass of Bcl-2. Proc. Natl. Aca. Sci. USA, 97:7871–7876.CrossRefGoogle Scholar
  17. Prapapanich, V., Chen, S., Nair, S.C., Rimerman, R.A., Smith, D.F., 1996a. Molecular cloning of human P48, a transient component of progesterone receptor complexes and an Hsp70-binding protein. Molecular Endocrinology, 10(4):420–431. doi:10.1210/me.10.4.420.PubMedCrossRefGoogle Scholar
  18. Prapapanich, V., Chen, S., Toran, E.G., Rimerman, R.A., Smith, D.F., 1996b. Mutational analysis of the hsp70-interacting protein Hip. Molecular and Cellular Biology, 16(1):6200–6207.PubMedGoogle Scholar
  19. Ravagnan, L., Gurbuxani, S., Susin, S.A., Maisse, C., Daugas, E., Zamzami, N., Mak, T., Jaattela, M., Penninger, J.M., Garrido, C., Kroemer, G., 2001. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nature-Cell Biol., 3:839–843. doi:10.1038/ncb0901-839.PubMedCrossRefGoogle Scholar
  20. Swan, D.C., Tucker, R.A., Holloway, B.P., Icenogle, J.P., 1997. A sensitive, type-specific, fluorogenic probe assay for detection of human papillomavirus DNA. J. Clin. Microbiol., 35(4):886–891.PubMedGoogle Scholar
  21. Vogelstein, B., Fearon, E.R., 1988. Genetic alterations during colorectal tumor development. N. Engl. J. Med., 312(9):525.CrossRefGoogle Scholar
  22. Ye, F., Fang, S.C., Zheng, S., 2001. In situ analysis the expression of new ST13 gene in colorectal cancer and its prognostic value. Journal of Practical Oncology, 16(5):318–321 (in Chinese).Google Scholar
  23. Zheng, S., 1993. Application of subtractive hybridization in screening for colorectal cancer-related genes. Chin. Med. J., 8:100.Google Scholar
  24. Zheng, S., 1997. Recent study on colorectal cancer in China: early detection and novel related gene. Chin. Med. J., 110(4):309–310.PubMedGoogle Scholar
  25. Zheng, S., Cai, X.H., Cao, J., Geng, L.Y., 1997. Screening and identification of down-regulated genes in colorectal carcinoma by subtractive hybridization: a method to identify putative tumor suppressor genes. Chin. Med. J., 110(7):543–549.PubMedGoogle Scholar

Copyright information

© Zhejiang University 2006

Authors and Affiliations

  • Dong Qing-hua  (董庆华)
    • 1
  • Zheng Shu  (郑树)
    • 1
  • Hu Yue  (胡跃)
    • 1
  • Chen Gong-xing  (陈功星)
    • 1
  • Ding Jia-yi  (丁佳逸)
    • 1
  1. 1.Cancer Institute, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations