Journal of Zhejiang University-SCIENCE A

, Volume 5, Issue 10, pp 1183–1190 | Cite as

Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae

  • Ali Nawaz Mahar
  • Muhammad Munir
  • Sami Elawad
  • Simon Richard Gowen
  • Nigel Graham Meckenzi Hague
Life Science & Biotechnology


Cells and cell-free solutions of the culture filtrate of the bacterial symbiont, Xenorhabdus nematophila taken from the entomopathogenic nematode Steinernema carpocapsae in aqueous broth suspensions were lethal to larvae of the diamondback moth Plutella xylostella. Their application on leaves of Chinese cabbage indicated that the cells can penetrate into the insects in the absence of the nematode vector. Cell-free solutions containing metabolites were also proved as effective as bacterial cells suspension. The application of aqueous suspensions of cells of X. nematophila or solutions containing its toxic metabolites to the leaves represents a possible new strategy for controlling insect pests on foliage.

Key words

Bacterial symbionts Xenorhabdus nematophila Entomopathogenic nematode Steinernema carpocapsae Diamondback moth Plutella xylostella 

Document code

CLC number

TQ150.9 O646.5 X783 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhurst, R.J., Boemare, N.E., 1990. Biology and Taxonomy of Xenorhabdus. In: Gaugler, R., Kaya, H.K. (Eds.), Entomopathogenic Nematodes in Biological Control. C.R.C. Press, Boca Raton, Florida p.75–90.Google Scholar
  2. Balcerzak, M., 1991. Comparative studies on parasitism caused by entomogenous nematodes, Steinernema feltiae and Heterorhabditis bacteriophora. The roles of the nematode-bacterial complex, and of the associated bacteria alone, in pathogenesis. Acta Parasitologica Polonica, 36:175–181.Google Scholar
  3. Boemare, N.E., Givaudan, A., Brehelin, M., Laumond, C., 1997. Symbiosis and pathogencity of nematode bacterium complexes. Symbiosis, 22:21–45.Google Scholar
  4. Dudney, R.A., 1997. Use of Xenorhabdus Nematophilus Im/l and 1906/1 for Fire Ant Control. US Patent, No. 5616318.Google Scholar
  5. Elawad, S.A., 1998. Studies on the Taxonomy and Biology of A Newly Isolated Species of Steinernema (Steinernematidae: Nematoda) from the Tropics and Its Associated Bacteria. Ph. D. Thesis. Department of Agriculture, University of Reading, UK.Google Scholar
  6. Elawad, S.A., Gowen, S.R., Hague, N.G.M., 1999. Efficacy of bacterial symbionts from entomopathogenic nematodes against the beet army worm (Spodoptera exigua). Test of Agrochemicals and Cultivars No. 20, Annals of Applied Biology (Supplement), 134: 66–67.Google Scholar
  7. Ensign, J.C., Bowen, D.J., Tenor, J.K., Ciche, T.A., Petell, J.K., Strickland, J.A., Orr, G.L., Fatig, R.O., Bintrim, S.B., ffrench-Constant, R.H., 2002. Proteins from the Genus Xenorhabdus are Toxic to Insects on Oral Exposure. US Patent, No. 0147148 A1.Google Scholar
  8. ffrench-Constant, R., Bowen, D., 1999. Photorhabdus toxins: novel biological insecticides. Current Opinion in Microbiology, 2:284–288.CrossRefGoogle Scholar
  9. Forst, S., Nealson, K., 1996. Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiological Review, 60:21–43.Google Scholar
  10. Georgis, R., Hague, N.G.M., 1981. A neoplectanid nematode in the web-spinning larch sawfly Cephalcia lariciphila (Hymenoptera: Pamphillidae). Annals of Applied Biology, 99:171–177.CrossRefGoogle Scholar
  11. Givaudan, A.S., Baghdiguian, S., Lanois, A., Boemare, N., 1995. Swarming and swimming changes concomitant with phase variation in Xenorhabdus nematophilus. Applied Environmental Microbiology, 61:1408–1413.Google Scholar
  12. Gotz, P., Boman, A., Boman, H.G., 1981. Interactions between insect immunity and an insect-pathogenic nematode with symbiotic bacteria. Proceedings of Royal Society London, 212:333–350.CrossRefGoogle Scholar
  13. Harcourt, D.G., 1962. Biology of cabbage caterpillars in eastern Ontario. Proceedings of the Entomological Society Ontario, 93:61–75.Google Scholar
  14. Kaya, H.K., Gaugler, R., 1993. Entomopathogenic nematodes. Annual Review of Entomology, 38:181–206.CrossRefGoogle Scholar
  15. Keinmeesuke, P., Vattanatangum, P., Sarnthoy, O., Sayampol, B., Saito, T., Nakasnji, F., Sinchaisria, N., 1985. Life Table of Diamondback Moth and Its Egg Parasite Trichogrammatiodea bactrae in Thailand. In: Talekar, N.S. (Ed.), Diamondback Moth and Other Crucifer Pests: Proceedings of the Second International Workshop, Asian Vegetable Research and Development Center. AVRDC, Tainan, Taiwan, p.309–315.Google Scholar
  16. Mahar, A.N., 2003. The Efficacy of Bacteria Isolated from Entomopathogenic Nematodes Against the Diamondback Moth Plutella Xylostella L. (Lepidoptera: Yponomeutidae). Ph.D. Thesis. Department of Agriculture, University of Reading, UK.Google Scholar
  17. Morris, O.N., 1985. Susceptibility of 31 species of agricultural insect pests to entomopathogenic nematodes Steinernema feltiae and Heterorhabditis bacteriophora. Canadian Entomologist, 117:401–407.CrossRefGoogle Scholar
  18. Mracek, Z., Hanzal, R., Kodrik, D., 1988. Sites of penetrations of juveniles Steinernematids and Heterorhabditis (Nematoda) in the larvae of G. mellonella (Lepidoptera). Journal of Invertebrate Pathology, 52:477–482.CrossRefGoogle Scholar
  19. Poinar, Jr. G.O., 1979. Nematodes for Biological Control of Insects. C.R.C. Press, Boca Raton, Florida.Google Scholar
  20. Poinar, Jr.G.O., Thomas, G.M., 1966. Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteriaceae: Eubacteriales) in the development of the nematode DD-136 (Neoplectanta sp. Steinernematidae). Paraitology, 56:385–390.CrossRefGoogle Scholar
  21. Ratnasinghe, G., Hague, N.G.M., 1997. Efficacy of Entomopathogenic nematodes against the diamondback moth, Plutella xylotella (Lepidoptera: Yponomeutidae). Pakistan Journal of Nematology, 15:45–53.Google Scholar
  22. Sambeek, J., Wiesner, A., 1999. Successful parasitation of locusts by entomopathogenic nematodes is correlated with inhibition of insect phagocytes. Journal of Invertebrate Pathology, 73:154–161.CrossRefGoogle Scholar
  23. Sun, C.N., Wu, T.K., Chen, J.S., Lee W.T., 1986. Insecticide Resistance in Diamondback Moth. In: Talekar, N.S., Griggs, T.D. (Eds.), Diamondback Moth Management: Proceedings of the First International Workshop, Asian Vegetable Research and Development Center. AVRDC, Shanhua, Taiwan, p.359–371.Google Scholar
  24. Tabashink, B.E., Cushing, N.L., Finson, N., Johnson, M.W., 1990. Field development of resistance to Bacillus thuringiensis in Diamondback moth (Lepidoptera: Plutellidea). Journal of Economic Entomology, 83:1671–1676.CrossRefGoogle Scholar
  25. Webster, J.M., Chen, G., Hu, K., Li, J., 2002. Bacterial Metabolites. In: Gaugler, R. (Ed.), Entomopathogenic Nematology. CAB International, Wallingford, UK, p. 99–114.Google Scholar
  26. Woodring, J.L., Kaya, H.K., 1988. Steinernematid and Heterorhabditid Nematodes: A Handbook of Biology and Techniques. Arkansas Experiment Station, Fayetteville, AR, USA, Southern Cooperatives Series Bulletin 331, p.28,Google Scholar

Copyright information

© Zhejiang University Press 2004

Authors and Affiliations

  • Ali Nawaz Mahar
    • 1
  • Muhammad Munir
    • 2
  • Sami Elawad
    • 1
  • Simon Richard Gowen
    • 1
  • Nigel Graham Meckenzi Hague
    • 1
  1. 1.Department of AgricultureUniversity of ReadingReadingUK
  2. 2.School of Plant SciencesUniversity of ReadingReadingUK

Personalised recommendations