Journal of Zhejiang University-SCIENCE A

, Volume 4, Issue 3, pp 317–323 | Cite as

Geometrical nonlinear stability analyses of cable-truss domes

  • Gao Bo-qing 
  • Lu Qun-xin 
  • Dong Shi-lin 
Civil Engineering

Abstract

The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cabletruss domes with different cable distributions. The results indicate that the critical load increases evidently when cables, especially diagonal cables, are distributed in the structure. The critical loads of the structure at different rise-span ratios are also discussed in this paper. It was shown that the effect of the tensional cable is more evident at small rise-span ratio. The buckling of the structure is characterized by a global collapse at small rise-span ratio; that the torsional buckling of the radial truss occurs at big rise-span ratio; and that at proper rise-span ratio, the global collapse and the lateral buckling of the truss occur nearly simultaneously.

Key words

Cable-truss dome Geometrical nonlinear stability analysis Parameter analysis Cable distribution Critical load 

Document code

CLC number

TU393.99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Ghaffar, A. M. and Khalifa, M. A., 1991. Importance of cable vibration in dynamics of cable-stayed bridges.Journal of Engineering Mechanics, ASCE,117: 2571–2589.CrossRefGoogle Scholar
  2. Aufaure, M., 2000. A three-node cable element ensuring the continuity of the horizontal tension: a clamp cable element.Computers & Structure,74: 243–251.CrossRefGoogle Scholar
  3. Cao, Z. and Ketter, R. L., 1991. Seismic modeling of Truss Stiffened Cable System.International Journal of Space Structure,6(1): 18–25.Google Scholar
  4. Chen, W. J. and Dong, S. L., 2001. Generalized incremental algorithm for nonlinear structural analysis.Engineering Mechanics,18(3): 28–33 (in Chinese).Google Scholar
  5. Chen, W. J., Fu, G. Y., Gong, J. H. and Dong, S. L., 2002. Instability behavior of partial double-layer latticeribbed domes.Spatial structure,8(1): 19–28 (in Chinese).Google Scholar
  6. Hangai, Y., 1981. Application of the generalized inverse to the geometrically nonlinear problem.Solid Mechanics (SM) Archives,6(1): 129–165.MathSciNetMATHGoogle Scholar
  7. Hangai, Y. and Kawaguchi, K., 1990. Analysis for shapefinding process of unstable structures.Bulletin of IASS,30(100): 111–128Google Scholar
  8. Karoumi, R., 1996. Dynamic response of cable-stayed bridges to moving vehicles. IABSE 15th Congress, Denmark, p.87–92.Google Scholar
  9. Karoumi, K., 1999. Some modeling aspects in the nolinear finite element analysis of cable supported bridges.Computers & Structures,71(1): 397–412.CrossRefGoogle Scholar
  10. Leonard, J. W., 1988. Tension Structure. McGraw-Hill, New York.Google Scholar
  11. Liu, Y. and Motro, R., 1995. Shape analysis and internal forces in unstable structures. Proc. IASS Int. Symposium,2: 819–826.Google Scholar
  12. Song, T. X., 1996. Finite element analysis of nonlinear structures. Press of Huazhong University of science and technology, Wuhan (in Chinese).Google Scholar
  13. Walther, R., Houriet, B., Isler, W. and Moia P., 1988. Cable Stayed Bridges. Thomas Telford, London.Google Scholar
  14. Wang, S. T. and Jiang, Z. R., 1999. The static analysis and study of dynamic characteristics of the cable-truss structure.Journal of Building structure,20(3): 2–7 (in Chinese).Google Scholar
  15. Xie, Y. Z. and Chen, Q. Z., 1989. Design and construction of the cable-truss.Composite structure of Anhui gymnasium,10(6): 71–79 (in Chinese).Google Scholar
  16. Zhang, L. X. and Shen, Z. Y., 2000. Numerical models for cable element in prestressed cable structures.Spatial structure,6(2): 18–23 (in Chinese).Google Scholar
  17. Zhang, Z. H. and Dong, S. L., 2001. Slippage analysis of continuous cable in tension structures.Spatial structure,7(3): 26–32 (in Chinese).MathSciNetGoogle Scholar

Copyright information

© Zhejiang University Press 2003

Authors and Affiliations

  • Gao Bo-qing 
    • 1
  • Lu Qun-xin 
    • 1
  • Dong Shi-lin 
    • 1
  1. 1.Department of Civil EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations