A strategy-proof auction mechanism for service composition based on user preferences

考虑用户偏好的服务组合防策略拍卖机制

Abstract

Service composition is an effective method of combining existing atomic services into a value-added service based on cost and quality of service (QoS). To meet the diverse needs of users and to offer pricing services based on QoS, we propose a service composition auction mechanism based on user preferences, which is strategy-proof and can be beneficial in selecting services based on user preferences and dynamically determining the price of services. We have proven that the proposed auction mechanism achieves desirable properties including truthfulness and individual rationality. Furthermore, we propose an auction algorithm to implement the auction mechanism, and carry out extensive experiments based on real data. The results verify that the proposed auction mechanism not only achieves desirable properties, but also helps users find a satisfactory service composition scheme.

摘要

服务组合是一种基于服务成本和服务质量 (QoS) 将现有原子服务组合为增值服务的有效方法. 为满足用户的多样化需求, 提供基于QoS的定价服务, 提出一种基于用户偏好的服务组合拍卖机制, 该机制具有防策略性, 有利于根据用户偏好选择服务, 动态确定服务价格. 本文证明, 所提出的拍卖机制达到了期望的性质, 包括真实性和个体合理性. 此外, 提出一种拍卖算法来实现拍卖机制, 并在真实数据基础上进行大量实验. 结果表明, 所提出的拍卖机制不仅达到预期效果, 而且帮助用户找到满意的服务组合方案.

This is a preview of subscription content, access via your institution.

References

  1. Al-Masri E, Mahmoud QH, 2007. Discovering the best web service. Proc 16th Int Conf on World Wide Web, p.1257–1258. https://doi.org/10.1145/1242572.1242795

    Google Scholar 

  2. Borjigin W, Ota K, Dong MX, 2018. In broker we trust: a double-auction approach for resource allocation in NFV markets. IEEE Trans Netw Serv Manag, 15(4):1322–1333. https://doi.org/10.1109/TNSM.2018.2882535

    Article  Google Scholar 

  3. Deng SG, Huang LT, Taheri J, et al., 2016. Mobility-aware service composition in mobile communities. IEEE Trans Syst Man Cybern Syst, 47(3):555–568. https://doi.org/10.1109/TSMC.2016.2521736

    Article  Google Scholar 

  4. Dimitriou T, Krontiris I, 2017. Privacy-respecting auctions and rewarding mechanisms in mobile crowd-sensing applications. J Netw Comput Appl, 100:24–34. https://doi.org/10.1016/j.jnca.2017.10.012

    Article  Google Scholar 

  5. Dong WY, Zhou MC, 2017. A supervised learning and control method to improve particle swarm optimization algorithms. IEEE Trans Syst Man Cybern Syst, 47(7):1135–1148. https://doi.org/10.1109/TSMC.2016.2560128

    Article  Google Scholar 

  6. Ghahramani MH, Zhou MC, Hon CT, 2017. Toward cloud computing QoS architecture: analysis of cloud systems and cloud services. IEEE/CAA J Autom Sin, 4(1):6–18. https://doi.org/10.1109/JAS.2017.7510313

    MathSciNet  Article  Google Scholar 

  7. He Q, Yan J, Jin H, et al., 2014. Quality-aware service selection for service-based systems based on iterative multi-attribute combinatorial auction. IEEE Trans Softw Eng, 40(2):192–215. https://doi.org/10.1109/TSE.2013.2297911

    Article  Google Scholar 

  8. Jiang CX, Chen Y, Wang Q, et al., 2018. Data-driven auction mechanism design in IaaS cloud computing. IEEE Trans Serv Comput, 11(5):743–756. https://doi.org/10.1109/TSC.2015.2464810

    Article  Google Scholar 

  9. Karakaya G, Köksalan M, 2011. An interactive approach for multi-attribute auctions. Dec Support Syst, 51(2):299–306. https://doi.org/10.1016/j.dss.2010.11.023

    Article  Google Scholar 

  10. Kennedy J, Eberhart R, 1995. Particle swarm optimization. Proc IEEE Int Conf on Neural Networks, p.1942–1948. https://doi.org/10.1109/ICNN.1995.488968

    Google Scholar 

  11. Li J, Zhang JQ, Jiang CJ, et al., 2015. Composite particle swarm optimizer with historical memory for function optimization. IEEE Trans Cybern, 45(10):2350–2363. https://doi.org/10.1109/TCYB.2015.2424836

    Article  Google Scholar 

  12. Moghaddam M, 2012. An auction-based approach for composite web service selection. Int Workshops on Service Oriented Computing, p.400–405. https://doi.org/10.1007/978-3-642-37804-1_41

    Google Scholar 

  13. Moghaddam M, Davis JG, 2017. Auction-based models for composite service selection: a design framework. Proc 5th and 6th Australian Symp on Service Research and Innovation, p.101–115. https://doi.org/10.1007/978-3-319-76587-7_7

    Google Scholar 

  14. Moghaddam M, Davis JG, Viglas T, 2013. A combinatorial auction model for composite service selection based on preferences and constraints. IEEE Int Conf on Services Computing, p.81–88. https://doi.org/10.1109/SCC.2013.112

    Google Scholar 

  15. Mu’Alem A, Nisan N, 2008. Truthful approximation mechanisms for restricted combinatorial auctions. Game Econ Behav, 64(2):612–631. https://doi.org/10.1016/j.geb.2007.12.009

    MathSciNet  Article  Google Scholar 

  16. Nisan N, Roughgarden T, Tardos E, et al., 2007. Algorithmic Game Theory. Cambridge University Press, Cambridge, USA.

    Google Scholar 

  17. Prasad AS, Rao S, 2014. A mechanism design approach to resource procurement in cloud computing. IEEE Trans Comput, 63(1):17–30. https://doi.org/10.1109/TC.2013.106

    MathSciNet  Article  Google Scholar 

  18. Sha J, Du YY, Qi L, 2019. A user requirement oriented web service discovery approach based on logic and threshold Petri net. IEEE/CAA J Autom Sin, 6(6):1528–1542. https://doi.org/10.1109/JAS.2019.1911657

    MathSciNet  Article  Google Scholar 

  19. Shi B, Wang JW, Wang ZW, et al., 2017. Trading web services in a double auction-based cloud platform: a game theoretic analysis. Proc IEEE 14th Int Conf on Services Computing, p.76–83. https://doi.org/10.1109/SCC.2017.18

    Google Scholar 

  20. Singer Y, 2010. Budget feasible mechanisms. Proc 51st Annual Symp on Foundations of Computer Science, p.765–774. https://doi.org/10.1109/FOCS.2010.78

    Google Scholar 

  21. Tanaka M, Murakami Y, 2016. Strategy-proof pricing for cloud service composition. IEEE Trans Cloud Comput, 4(3): 363–375. https://doi.org/10.1109/TCC.2014.2338310

    Article  Google Scholar 

  22. Wang PW, Du XY, 2019. QoS-aware service selection using an incentive mechanism. IEEE Trans Serv Comput, 12(2): 262–275. https://doi.org/10.1109/TSC.2016.2602203

    Article  Google Scholar 

  23. Wang PW, Ding ZJ, Jiang CJ, et al., 2014. Constraint-aware approach to web service composition. IEEE Trans Syst Man Cybern Syst, 44(6):770–784. https://doi.org/10.1109/TSMC.2013.2280559

    Article  Google Scholar 

  24. Wang PW, Ding ZJ, Jiang CJ, et al., 2016. Automatic web service composition based on uncertainty execution effects. IEEE Trans Serv Comput, 9(4):551–565. https://doi.org/10.1109/TSC.2015.2412943

    Article  Google Scholar 

  25. Wang PW, Liu T, Zhan Y, et al., 2017a. A Bayesian Nash equilibrium of QoS-aware web service composition. IEEE Int Conf on Web Services, p.676–683. https://doi.org/10.1109/ICWS.2017.81

    Google Scholar 

  26. Wang PW, Zhan Y, Liu T, et al., 2017b. QoS-aware service composition for service-based systems using multi-round vickery auction. IEEE Int Conf on Systems, Man, and Cybernetics, p.2891–2896. https://doi.org/10.1109/SMC.2017.8123066

    Google Scholar 

  27. Watanabe A, Ishikawa F, Fukazawa Y, et al., 2012. Web service selection algorithm using Vickrey auction. Proc IEEE 19th Int Conf on Web Services, p.336–342. https://doi.org/10.1109/ICWS.2012.83

    Google Scholar 

  28. Wei Y, Pan L, Yuan D, et al., 2016. A distributed game-theoretic approach for IaaS service trading in an auction-based cloud market. IEEE TrustCom/BigDataSE/ISPA, p.1543–1550. https://doi.org/10.1109/TrustCom.2016.0240

    Google Scholar 

  29. Wen YT, Shi JY, Zhang Q, et al., 2015. Quality-driven auction-based incentive mechanism for mobile crowd sensing. IEEE Trans Veh Technol, 64(9):4203–4214. https://doi.org/10.1109/TVT.2014.2363842

    Article  Google Scholar 

  30. Wu QW, Zhou MC, Zhu QS, et al., 2018. VCG auction-based dynamic pricing for multigranularity service composition. IEEE Trans Autom Sci Eng, 15(2):796–805. https://doi.org/10.1109/TASE.2017.2695123

    Article  Google Scholar 

  31. Wu QW, Zhou MC, Zhu QS, et al., 2020. MOELS: multiobjective evolutionary list scheduling for cloud workflows. IEEE Trans Autom Sci Eng, 17(1):166–176. https://doi.org/10.1109/TASE.2019.2918691

    Article  Google Scholar 

  32. Wu Y, Yan CG, Ding ZJ, et al., 2016. A multilevel index model to expedite web service discovery and composition in large-scale service repositories. IEEE Trans Serv Comput, 9(3):330–342. https://doi.org/10.1109/TSC.2015.2398442

    Article  Google Scholar 

  33. Xu J, Xiang JX, Yang DJ, 2015. Incentive mechanisms for time window dependent tasks in mobile crowdsensing. IEEE Trans Wirel Commun, 14(11):6353–6364. https://doi.org/10.1109/TWC.2015.2452923

    Article  Google Scholar 

  34. Zhang Y, Zhou P, Cui GM, 2019. Multi-model based PSO method for burden distribution matrix optimization with expected burden distribution output behaviors. IEEE/CAA J Autom Sin, 6(6):1506–1512. https://doi.org/10.1109/JAS.2018.7511090

    Google Scholar 

  35. Zheng ZZ, Gui Y, Wu F, et al., 2015. STAR: strategy-proof double auctions for multi-cloud, multi-tenant bandwidth reservation. IEEE Trans Comput, 64(7):2071–2083. https://doi.org/10.1109/TC.2014.2346204

    MathSciNet  Article  Google Scholar 

  36. Zheng ZZ, Wu F, Gao XF, et al., 2017. A budget feasible incentive mechanism for weighted coverage maximization in mobile crowdsensing. IEEE Trans Mob Comput, 16(9): 2392–2407. https://doi.org/10.1109/TMC.2016.2632721

    Article  Google Scholar 

  37. Zhou BW, Srirama SN, Buyya R, 2019. An auction-based incentive mechanism for heterogeneous mobile clouds. J Syst Softw, 152:151–164. https://doi.org/10.1016/j.jss.2019.03.003

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Yao XIA and Zhiqiu HUANG designed the research. Yao XIA processed the data and drafted the manuscript. Zhiqiu HUANG helped organize the manuscript. Yao XIA revised and finalized the paper.

Corresponding author

Correspondence to Zhiqiu Huang 黄志球.

Ethics declarations

Yao XIA and Zhiqiu HUANG declare that they have no conflict of interest.

Additional information

Project supported by the Collaborative Innovation Center of Novel Software Technology and Industrialization, the National Key Research and Development Program of China (Nos. 2016YFB1000802 and 2018YFB1003900), and the National Natural Science Foundation of China (No. 61772270)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Huang, Z. A strategy-proof auction mechanism for service composition based on user preferences. Front Inform Technol Electron Eng 22, 185–201 (2021). https://doi.org/10.1631/FITEE.1900726

Download citation

Key words

  • Combinatorial reverse auction
  • Service composition
  • User preference
  • Strategy-proof
  • Dynamic pricing

关键词

  • 组合逆向拍卖
  • 服务组合
  • 用户偏好
  • 防策略性
  • 动态定价

CLC number

  • TP311.5