2018 special issue on artificial intelligence 2.0: theories and applications



  1. Cheng J, Wang PS, Li G, et al., 2018. Recent advances in efficient computation of deep convolutional neural networks. Front Inform Technol Electron Eng, 19(1):64–77. https://doi.org/10.1631/FITEE.1700789CrossRefGoogle Scholar
  2. Duan XY, Tang SL, Zhang SY, et al., 2018. Temporalityenhanced knowledge memory network for factoid question answering. Front Inform Technol Electron Eng, 19(1):104–115. https://doi.org/10.1631/FITEE.1700788CrossRefGoogle Scholar
  3. FITEE editorial staff, 2018. An interview with Dr. Raj Reddy on artificial intelligence. Front Inform Technol Electron Eng, 19(1):3–5. https://doi.org/10.1631/FITEE.1700860CrossRefGoogle Scholar
  4. Li S, Song SJ, Wu C, 2018. Layer-wise domain correction for unsupervised domain adaptation. Front Inform Technol Electron Eng, 19(1):91–103. https://doi.org/10.1631/FITEE.1700774CrossRefGoogle Scholar
  5. Ma YQ, Wang ZR, Yu SY, et al., 2018. A novel spiking neural network of receptive field encoding with groups of neurons decision. Front Inform Technol Electron Eng, 19(1): 139–150. https://doi.org/10.1631/FITEE.1700714CrossRefGoogle Scholar
  6. Pan YH, 2016. Heading toward artificial intelligence 2.0. Engineering, 2(4):409–413. https://doi.org/10.1016/J.ENG.2016.04.018CrossRefGoogle Scholar
  7. Pan YH, 2017. Special issue on artificial intelligence 2.0. Front Inform Technol Electron Eng, 18(1):1–2. https://doi.org/10.1631/FITEE.1710000CrossRefGoogle Scholar
  8. Qian YM, Weng C, Chang XK, et al., 2018. Past review, current progress, and challenges ahead on the cocktail party problem. Front Inform Technol Electron Eng, 19(1):40–63. https://doi.org/10.1631/FITEE.1700814CrossRefGoogle Scholar
  9. Shum HY, He XD, Li D, 2018. From Eliza to XiaoIce: challenges and opportunities with social chatbots. Front Inform Technol Electron Eng, 19(1):10–26 https://doi.org/10.1631/FITEE.1700826CrossRefGoogle Scholar
  10. Wang HG, Li X, Zhang T, 2018. Generative adversarial network based novelty detection using minimized reconstruction error. Front Inform Technol Electron Eng, 19(1): 116–125. https://doi.org/10.1631/FITEE.1700786CrossRefGoogle Scholar
  11. Xiang W, Sun LY, You WT, et al., 2018. Crowdsourcing intelligent design. Front Inform Technol Electron Eng, 19(1): 126–138. https://doi.org/10.1631/FITEE.1700810CrossRefGoogle Scholar
  12. Xu D, Dai F, Lu Y, 2018. A platform of digital brain using crowd power. Front Inform Technol Electron Eng, 19(1): 78–90. https://doi.org/10.1631/FITEE.1700800CrossRefGoogle Scholar
  13. Yu B, Kumbier K, 2018. Artificial intelligence and statistics. Front Inform Technol Electron Eng, 19(1):6–9. https://doi.org/10.1631/FITEE.1700813CrossRefGoogle Scholar
  14. Zhang QS, Zhu SC, 2018. Visual interpretability for deep learning: a survey. Front Inform Technol Electron Eng, 19(1):27–39. https://doi.org/10.1631/FITEE.1700808CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina
  2. 2.Chinese Academy of EngineeringBeijingChina

Personalised recommendations