Skip to main content
Log in

Visual interpretability for deep learning: a survey

  • Review
  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

This paper reviews recent studies in understanding neural-network representations and learning neural networks with interpretable/disentangled middle-layer representations. Although deep neural networks have exhibited superior performance in various tasks, interpretability is always Achilles’ heel of deep neural networks. At present, deep neural networks obtain high discrimination power at the cost of a low interpretability of their black-box representations. We believe that high model interpretability may help people break several bottlenecks of deep learning, e.g., learning from a few annotations, learning via human–computer communications at the semantic level, and semantically debugging network representations. We focus on convolutional neural networks (CNNs), and revisit the visualization of CNN representations, methods of diagnosing representations of pre-trained CNNs, approaches for disentangling pre-trained CNN representations, learning of CNNs with disentangled representations, and middle-to-end learning based on model interpretability. Finally, we discuss prospective trends in explainable artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubry M, Russell BC, 2015. Understanding deep features with computer-generated imagery. IEEE Int Conf on Computer Vision, p.2875–2883. https://doi.org/10.1109/ICCV.2015.329

    Google Scholar 

  • Aubry M, Maturana D, Efros A, et al., 2014. Seeing 3D chairs: exemplar part-based 2D–3D alignment using a large dataset of CAD models. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.3762–3769.

    Google Scholar 

  • Bau D, Zhou B, Khosla A, et al., 2017. Network dissection: quantifying interpretability of deep visual representations. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.1063–6919. https://doi.org/10.1109/CVPR.2017.354

    Google Scholar 

  • Chen X, Duan Y, Houthooft R, et al., 2016. Infogan: interpretable representation learning by information maximizing generative adversarial nets. NIPS, p.2172–2180.

    Google Scholar 

  • Dosovitskiy A, Brox T, 2016. Inverting visual representations with convolutional networks. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.4829–4837.

    Google Scholar 

  • Fong RC, Vedaldi A, 2017. Interpretable explanations of black boxes by meaningful perturbation. IEEE Int Conf on Computer Vision, p.3429–3437. https://doi.org/10.1109/ICCV.2017.371

    Google Scholar 

  • Goyal Y, Mohapatra A, Parikh D, et al., 2016. Towards transparent AI systems: interpreting visual question answering models. https://arxiv.org/abs/1608.08974

    Google Scholar 

  • He K, Zhang X, Ren S, et al., 2016. Deep residual learning for image recognition. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.770–778. https://doi.org/10.1109/CVPR.2016.90

    Google Scholar 

  • Hu Z, Ma X, Liu Z, et al., 2016. Harnessing deep neural networks with logic rules. http://arxiv.org/abs/1603.06318

    Book  Google Scholar 

  • Huang G, Liu Z, Weinberger KQ, et al., 2017. Densely connected convolutional networks. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.4700–4708.

    Google Scholar 

  • Kindermans PJ, Schütt KT, Alber M, et al., 2017. Learning how to explain neural networks: patternnet and patternattribution. http://arxiv.org/abs/1705.05598

    Google Scholar 

  • Koh P, Liang P, 2017. Understanding black-box predictions via influence functions. Proc 34th Int Conf on Machine Learning, p.1885–1894.

    Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE, 2012. Imagenet classification with deep convolutional neural networks. NIPS, p.1097–1105.

    Google Scholar 

  • Kumar D, Wong A, Taylor GW, 2017. Explaining the unexplained: a class-enhanced attentive response (clear) approach to understanding deep neural networks. IEEE Conf on Computer Vision and Pattern Recognition Workshops, p.1686–1694. https://doi.org/10.1109/CVPRW.2017.215

    Google Scholar 

  • Lakkaraju H, Kamar E, Caruana R, et al., 2017. Identifying unknown unknowns in the open world: representations and policies for guided exploration. Proc 31st AAAI Conf on Artificial Intelligence, p.2124–2132.

    Google Scholar 

  • LeCun Y, Bottou L, Bengio Y, et al., 1998a. Gradient-based learning applied to document recognition. Proc IEEE, 86(11):2278–2324. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  • LeCun Y, Cortes C, Burges CJ, 1998b. The MNIST Database of Handwritten Digits. http://yann.lecun.com/exdb/ mnist/ [Accessed on June, 2017]

    Google Scholar 

  • Liu Z, Luo P, Wang X, et al., 2015. Deep learning face attributes in the wild. IEEE Int Conf on Computer Vision, p.3730–3738. https://doi.org/10.1109/ICCV.2015.425

    Google Scholar 

  • Lu Y, 2015. Unsupervised learning on neural network outputs (v9). http://arxiv.org/abs/1506.00990

    Google Scholar 

  • Mahendran A, Vedaldi A, 2015. Understanding deep image representations by inverting them. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.5188–5196. https://doi.org/10.1109/CVPR.2015.7299155

    Google Scholar 

  • Netzer Y, Wang T, Coates A, et al., 2011. Reading digits in natural images with unsupervised feature learning. NIPS, p.1–9.

    Google Scholar 

  • Nguyen A, Clune J, Bengio Y, et al., 2017. Plug & play generative networks: conditional iterative generation of images in latent space. IEEE Conf on Computer Vision and Pattern Recognition, p.3510–3520. https://doi.org/10.1109/CVPR.2017.374

    Google Scholar 

  • Olah C, Mordvintsev A, Schubert L, 2017. Feature visualization. Distill. https://doi.org/10.23915/distill.00007

    Google Scholar 

  • Paysan P, Knothe R, Amberg B, et al., 2009. A 3D face model for pose and illumination invariant face recognition. 6th IEEE Int Conf on Advanced Video and Signal Based Surveillance, p.296–301. https://doi.org/10.1109/AVSS.2009.58

    Google Scholar 

  • Ribeiro MT, Singh S, Guestrin C, 2016. “Why should I trust you?” explaining the predictions of any classifier. Proc 22nd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.1135–1144. https://doi.org/10.1145/2939672.2939778

    Google Scholar 

  • Sabour S, Frosst N, Hinton GE, 2017. Dynamic routing between capsules. NIPS, p.3859–3869.

    Google Scholar 

  • Selvaraju RR, Cogswell M, Das A, et al., 2017. Grad-CAM: visual explanations from deep networks via gradientbased localization. IEEE Int Conf on Computer Vision, p.618–626. https://doi.org/10.1109/ICCV.2017.74

    Google Scholar 

  • Simonyan K, Vedaldi A, Zisserman A, 2013. Deep inside convolutional networks: visualising image classification models and saliency maps. http://arxiv.org/abs/1312.6034

    Google Scholar 

  • Springenberg JT, Dosovitskiy A, Brox T, et al., 2015. Striving for simplicity: the all convolutional net. Inte Conf on Learning Representations, p.1–14.

    Google Scholar 

  • Su J, Vargas DV, Kouichi S, 2017. One pixel attack for fooling deep neural networks. http://arxiv.org/abs/1710.08864

    Google Scholar 

  • Szegedy C, Zaremba W, Sutskever I, et al., 2014. Intriguing properties of neural networks. http://arxiv.org/abs/1312.6199

    Google Scholar 

  • Wang P, Wu Q, Shen C, et al., 2017. The VQA-machine: learning how to use existing vision algorithms to answer new questions. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.1173–1182. https://doi.org/10.1109/CVPR.2017.416

    Google Scholar 

  • Wu TF, Zhu SC, 2011. A numerical study of the bottomup and top-down inference processes in And-Or graphs. Int J Comput Vis, 93(2):226–252.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu TF, Xia GS, Zhu SC, 2007. Compositional boosting for computing hierarchical image structures. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.1–8. https://doi.org/10.1109/CVPR.2007.383034

    Google Scholar 

  • Wu TF, Li X, Song X, et al., 2017. Interpretable R-CNN. http://arxiv.org/abs/1711.05226

    Google Scholar 

  • Yang X, Wu TF, Zhu SC, 2009. Evaluating information contributions of bottom-up and top-down processes. IEEE 12th Int Conf on Computer Vision, p.1042–1049. https://doi.org/10.1109/ICCV.2009.5459386

    Google Scholar 

  • Yosinski J, Clune J, Bengio Y, et al., 2014. How transferable are features in deep neural networks? NIPS, p.1173–1182.

    Google Scholar 

  • Zeiler MD, Fergus R, 2014. Visualizing and understanding convolutional networks. European Conf on Computer Vision, p.818–833. https://doi.org/10.1007/978-3-319-10590-1_53

    Google Scholar 

  • Zhang Q, Cao R, Wu YN, et al., 2016. Growing interpretable part graphs on convnets via multi-shot learning. Proc 30th AAAI Conf on Artificial Intelligence, p.2898–2906.

    Google Scholar 

  • Zhang Q, Cao R, Wu YN, et al., 2017a. Mining object parts from CNNs via active question-answering. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.346–355. https://doi.org/10.1109/CVPR.2017.414

    Google Scholar 

  • Zhang Q, Cao R, Zhang S, et al., 2017b. Interactively transferring CNN patterns for part localization. http://arxiv.org/abs/1708.01783

    Google Scholar 

  • Zhang Q, Wang W, Zhu SC, 2018a. Examining CNN representations with respect to dataset bias. Proc 32nd AAAI Conf on Artificial Intelligence, in press.

    Google Scholar 

  • Zhang Q, Cao R, Shi F, et al., 2018b. Interpreting CNN knowledge via an explanatory graph. Proc 32nd AAAI Conf on Artificial Intelligence, p.2124–2132.

    Google Scholar 

  • Zhang Q, Yang Y, Wu YN, et al., 2018c. Interpreting CNNs via decision trees. http://arxiv.org/abs/1802.00121

    Google Scholar 

  • Zhang Q, Wu YN, Zhu SC, 2018d. Interpretable convolutional neural networks. Proc IEEE Conf on Computer Vision and Pattern Recognition, in press.

    Google Scholar 

  • Zhou B, Khosla A, Lapedriza A, et al., 2015. Object detectors emerge in deep scene CNNs. http://arxiv.org/abs/1412.6856

    Google Scholar 

  • Zintgraf LM, Adel TSCT, Welling M, 2017. Visualizing deep neural network decisions: prediction difference analysis. http://arxiv.org/abs/1702.04595

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-shi Zhang.

Additional information

Project supported by the ONR MURI project (No. N00014-16-1-2007), the DARPA XAI Award (No. N66001-17-2-4029), and NSF IIS (No. 1423305)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Qs., Zhu, Sc. Visual interpretability for deep learning: a survey. Frontiers Inf Technol Electronic Eng 19, 27–39 (2018). https://doi.org/10.1631/FITEE.1700808

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1700808

Keywords

CLC number

Navigation