Skip to main content
Log in

Abstract

A powerful platform of digital brain is proposed using crowd wisdom for brain research, based on the computational artificial intelligence model of synthesis reasoning and multi-source analogical generating. The design of the platform aims to make it a comprehensive brain database, a brain phantom generator, a brain knowledge base, and an intelligent assistant for research on neurological and psychiatric diseases and brain development. Using big data, crowd wisdom, and high performance computers may significantly enhance the capability of the platform. Preliminary achievements along this track are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amunts K, Schleicher A, Bürgel U, et al., 1999. Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol, 412(2):319–341. https://doi.org/10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7

    Article  Google Scholar 

  • Arnold JB, Liow JS, Schaper KA, et al., 2001. Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects. NeuroImage, 13(5):931–943. https://doi.org/10.1006/nimg.2001.0756

    Article  Google Scholar 

  • Aubert-Broche B, Evans AC, Collins L, 2006. A new improved version of the realistic digital brain phantom. NeuroImage, 32(1):138–145. https://doi.org/10.1016/j.neuroimage.2006.03.052

    Article  Google Scholar 

  • Baars BJ, Gage NM, 2010. Cognition, Brain, and Consciousness: Introduction to Cognitive Neuroscience (2nd Ed.). Elsevier, p.591–616. https://doi.org/10.1016/B978-0-12-375070-9.00021-8

    Google Scholar 

  • Bansal R, Xu D, Peterson BS, 2005. Eigen function based coregistration of diffusion tensor images to anatomical magnetic resonance images. Proc Int Soc Magn Reson Med, 13:2332.

    Google Scholar 

  • Bansal R, Staib LH, Xu DR, et al., 2007. Statistical analyses of brain surfaces using gaussian random fields on 2-D manifolds. IEEE Trans Med Imag, 26(1):46–57. https://doi.org/10.1109/TMI.2006.884187

    Article  Google Scholar 

  • Bansal R, Staib LH, Laine AF, et al., 2012. Anatomical brain images alone can accurately diagnose chronic neuropsy chiatric illnesses. PloS ONE, 7(12):e50698. https://doi.org/10.1371/journal.pone.0050698

    Article  Google Scholar 

  • Bansal R, Hao XJ, Liu F, et al., 2013. The effects of changing water content, relaxation times, and tissue contrast on tissue segmentation and measures of cortical anatomy in MR images. Magn Reson Imag, 31(10):1709–1730. https://doi.org/10.1016/j.mri.2013.07.017

    Article  Google Scholar 

  • Bastin ME, 1999. Correction of eddy current-induced artefacts in diffusion tensor imaging using iterative crosscorrelation. Magn Reson Imag, 17(7):1011–1024. https://doi.org/10.1016/S0730-725X(99)00026-0

    Article  Google Scholar 

  • Bastin ME, 2001. On the use of the FLAIR technique to improve the correction of eddy current induced artefacts in MR diffusion tensor imaging. Magn Reson Imag, 19(7): 937–950. https://doi.org/10.1016/S0730-725X(01)00427-1

    Article  Google Scholar 

  • Bastin ME, Armitage PA, 2000. On the use of water phantom images to calibrate and correct eddy current induced artefacts in MR diffusion tensor imaging. Magn Reson Imag, 18(6):681–687. https://doi.org/10.1016/S0730-725X(00)00158-2

    Article  Google Scholar 

  • Belliveau JW, Kennedy DNJr, McKinstry RC, et al., 1991. Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032):716–719. https://doi.org/10.1126/science.1948051

    Article  Google Scholar 

  • Bohland JW, Bokil H, Allen CB, et al., 2009. The brain atlas concordance problem: quantitative comparison of anatomical parcellations. PLoS ONE, 4(9):e7200. https://doi.org/10.1371/journal.pone.0007200

    Article  Google Scholar 

  • Bradley MM, Sabatinelli D, Lang PJ, et al., 2003. Activation of the visual cortex in motivated attention. Behav Neurosci, 117(2):369–380. https://doi.org/10.1037/0735-7044.117.2.369

    Article  Google Scholar 

  • Brown RW, Cheng YCN, Haacke EM, et al., 2014. Magnetic Resonance Imaging: Physical Principles and Sequence Design (2nd Ed.). Wiley Blackwell, New York. https://doi.org/10.1002/9781118633953

    Book  Google Scholar 

  • Davatzikos C, 1996a. Nonlinear registration of brain images using deformable models. Proc Workshop on Mathematical Methods in Biomedical Image Analysis, p.94–103. https://doi.org/10.1109/MMBIA.1996.534061

    Chapter  Google Scholar 

  • Davatzikos C, 1996b. Spatial normalization of 3D brain images using deformable models. J Comput Assist Tomogr, 20(4):656–665. https://doi.org/10.1097/00004728-199607000-00031

    Article  MathSciNet  Google Scholar 

  • Davatzikos C, 1997. Spatial transformation and registration of brain images using elastically deformable models. Comput Vis Image Underst, 66(2):207–222. https://doi.org/10.1006/cviu.1997.0605

    Article  Google Scholar 

  • Davatzikos C, Genc A, Xu DR, et al., 2001. Voxel-based morphometry using the RAVENS maps: methods and validation using simulated longitudinal atrophy. NeuroImage, 14(6):1361–1369. https://doi.org/10.1006/nimg.2001.0937

    Article  Google Scholar 

  • DeYoe EA, Carman GJ, Bandettini P, et al., 1996. Mapping striate and extrastriate visual areas in human cerebral cortex. PNAS, 93(6):2382–2386. https://doi.org/10.1073/pnas.93.6.2382

    Article  Google Scholar 

  • Dubin M, Weissman M, Xu DR, et al., 2012. Identification of a circuit-based endophenotype for familial depression. Psych Res Neuroimag, 201(3):175–181. https://doi.org/10.1016/j.pscychresns.2011.11.007

    Article  Google Scholar 

  • Evans AC, 2006. The NIH MRI study of normal brain development. NeuroImage, 30(1):184–202. https://doi.org/10.1016/j.neuroimage.2005.09.068

    Article  MathSciNet  Google Scholar 

  • Fagiolo G, Waldman A, Hajnal JV, 2008. A simple procedure to improve FMRIb software library brain extraction tool performance. Br J Radiol, 81(963):250–251. https://doi.org/10.1259/bjr/12956156

    Article  Google Scholar 

  • Fan LY, 2013. Development of Artifact-Free Imaging System and fMRI Research Paradigm for Creative Thinking in an MR-Compatible Environment. MS Thesis, East China Normal University, Shanghai, China (in Chinese).

    Google Scholar 

  • Fan LY, Fan XF, Luo WC, et al., 2014. An explorative fMRI study of human creative thinking using: a specially designed iCAD system. Acta Psychol Sin, 46(4):427–436 (in Chinese). https://doi.org/10.3724/SP.J.1041.2014.00427

    Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, et al., 2010. MR connectomics: principles and challenges. J Neurosci Methods, 194(1):34–45. https://doi.org/10.1016/j.jneumeth.2010.01.014

    Article  Google Scholar 

  • Hagoort P, 2005. On broca, brain, and binding: a new framework. Trends Cogn Sci, 9(9):416–423. https://doi.org/10.1016/j.tics.2005.07.004

    Article  Google Scholar 

  • Hao XJ, Xu DR, Bansal R, et al., 2013. Multimodal magnetic resonance imaging: the coordinated use of multiple, mutually informative probes to understand brain structure and function. Human Brain Map, 34(2):253–271. https://doi.org/10.1002/hbm.21440

    Article  Google Scholar 

  • Haselgrove JC, Moore JR, 1996. Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magn Reson Med, 36(6):960–964. https://doi.org/10.1002/mrm.1910360620

    Article  Google Scholar 

  • Hsu JL, Leemans A, Bai CH, et al., 2008. Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study. NeuroImage, 39(2):566–577. https://doi.org/10.1016/j.neuroimage.2007.09.017

    Article  Google Scholar 

  • Huster RJ, Westerhausen R, Kreuder F, et al., 2009. Hemispheric and gender related differences in the Midcingulum bundle: a DTI study. Human Brain Map, 30(2):383–391. https://doi.org/10.1002/hbm.20509

    Article  Google Scholar 

  • Jack CR Jr, Bernstein MA, Fox NC, et al., 2008. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imag, 27(4):685–691. https://doi.org/10.1002/jmri.21049

    Article  Google Scholar 

  • Jiang YW, Liu F, Fan MX, et al., 2017. Deducing magnetic resonance neuroimages based on knowledge from samples. Comput Med Imag Graph, 62:1–14. https://doi.org/10.1016/j.compmedimag.2017.07.005

    Article  Google Scholar 

  • Kanungo T, Mount DM, Netanyahu NS, et al., 2002. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Patt Anal Mach Intell, 24(7):881–892. https://doi.org/10.1109/TPAMI.2002.1017616

    Article  Google Scholar 

  • Liu F, Peterson B, Duan Y, et al., 2006. Fast spin echo for T2 quantification at 3T. Proc 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, p.2404.

    Google Scholar 

  • Liu F, Garland M, Duan YS, et al., 2008. Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. NeuroImage, 40(1):148–159. https://doi.org/10.1016/j.neuroimage.2007.11.021

    Article  Google Scholar 

  • Liu F, Garland M, Duan YS, et al., 2010. Techniques for in utero, longitudinal MRI of fetal brain development in baboons at 3 T. Methods, 50(3):147–156. https://doi.org/10.1016/j.ymeth.2009.03.019

    Article  Google Scholar 

  • Liu W, Liu XZ, Yang G, et al., 2012a. Improving the correction of eddy current-induced distortion in diffusion-weighted images by excluding signals from the cerebral spinal fluid. Comput Med Imag Graph, 36(7):542–551. https://doi.org/10.1016/j.compmedimag.2012.06.004

    Article  Google Scholar 

  • Liu W, Liu XZ, He XF, et al., 2012b. Spatial normalization of diffusion tensor images with voxel-wise reconstruction of the diffusion gradient direction. Proc 2nd Int Conf on Multimodal Brain Image Analysis, p.134–146. https://doi.org/10.1007/978-3-642-33530-3_11

    Chapter  Google Scholar 

  • Liu XZ, Yuan ZM, Zhu JM, et al., 2013. Medical image registration by combining global and local information: a chain-type diffeomorphic demons algorithm. Phys Med Biol, 58(23):8359–8378. https://doi.org/10.1088/0031-9155/58/23/8359

    Article  Google Scholar 

  • Lorenzi M, Ayache N, Frisoni G, et al., 2010. 4D registration of serial brain’s MR images: a robust measure of changes applied to Alzheimer’s disease. Miccai Workshop on Spatio-Temporal Image Analysis for Longitudinal and Time-Series Image Data.

    Google Scholar 

  • Lynch G, 1979. Representations in the brain. Science, 204(4394):762. https://doi.org/10.1126/science.204.4394.762

    Article  Google Scholar 

  • Maguire EA, 2001. Neuroimaging, memory and the human hippocampus. Rev Neurol, 157(8-9 Pt 1):791–794.

    Google Scholar 

  • Mak KK, Kong WY, Mak A, et al., 2013. Polymorphisms of the serotonin transporter gene and post-stroke depression: a meta-analysis. J Neurol Neurosurg Psych, 84(3):322–328. https://doi.org/10.1136/jnnp.2012-303791

    Article  Google Scholar 

  • Michelucci P, Dickinson JL, 2016. The power of crowds. Science, 351(6268):32–33. https://doi.org/10.1126/science.aad6499

    Article  Google Scholar 

  • Neeb H, Zilles K, Shah NJ, 2006. Fully-automated detection of cerebral water content changes: study of age-and genderrelated H2O patterns with quantitative MRI. NeuroImage, 29(3):910–922. https://doi.org/10.1016/j.neuroimage.2005.08.062

    Article  Google Scholar 

  • Ng HP, Ong SH, Foong KWC, et al., 2006. Medical image segmentation using k-means clustering and improved Watershed algorithm. IEEE Southwest Symp on Image Analysis and Interpretation, p.61–65. https://doi.org/10.1109/SSIAI.2006.1633722

    Google Scholar 

  • Nickel M, Murphy K, Tresp V, et al., 2016. A review of relational machine learning for knowledge graphs. Proc IEEE, 104(1):11–33. https://doi.org/10.1109/JPROC.2015.2483592

    Article  Google Scholar 

  • Packard MG, White NM, 1991. Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists. Behav Neurosci, 105(2):295–306. https://doi.org/10.1037/0735-7044.105.2.295

    Article  Google Scholar 

  • Pan YH, 1996. The synthesis reasoning. Patt Recogn Artif Intell, 9(3):201–208 (in Chinese).

    Google Scholar 

  • Pan YH, 1997. Intelligent CAD Methodology and Modeling. Science Press, Beijing, China (in Chinese).

    Google Scholar 

  • Peterson BS, Warnera V, Bansal R, et al., 2009. Cortical thinning in persons at increased familial risk for major depression. PNAS, 106(15):6273–6278. https://doi.org/10.1073/pnas.0805311106

    Article  Google Scholar 

  • Plessen KJ, Grüner R, Lundervold A, et al., 2006. Reduced white matter connectivity in the corpus callosum of children with Tourette syndrome. J Child Psychol Psych, 47(10):1013–1022. https://doi.org/10.1111/j.1469-7610.2006.01639.x

    Article  Google Scholar 

  • Rhodes G, Brennan S, Carey S, 1987. Identification and ratings of caricatures: implications for mental representations of faces. Cogn Psychol, 19(4):473–497. https://doi.org/10.1016/0010-0285(87)90016-8

    Article  Google Scholar 

  • Schreibmann E, Thorndyke B, Li TF, et al., 2008. Fourdimensional image registration for image-guided radiotherapy. Int J Radiat Oncol Biol Phys, 71(2):578–586. https://doi.org/10.1016/j.ijrobp.2008.01.042

    Article  Google Scholar 

  • Shapiro ML, Eichenbaum H, 1999. Hippocampus as a memory map: Synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus, 9(4):365–384. https://doi.org/10.1002/(SICI)1098-1063(1999)9:4<365::AID-HIPO4>3.0.CO;2-T

    Article  Google Scholar 

  • Shen DG, Davatzikos C, 2002. HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imag, 21(11):1421–1439. https://doi.org/10.1109/TMI.2002.803111

    Article  Google Scholar 

  • Shen DG, Davatzikos C, 2003. Very high-resolution morphometry using mass-preserving deformations and HAMMER elastic registration. NeuroImage, 18(1):28–41. https://doi.org/10.1006/nimg.2002.1301

    Article  Google Scholar 

  • Shen DG, Davatzikos C, 2004. Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping. NeuroImage, 21(4):1508–1517. https://doi.org/10.1016/j.neuroimage.2003.12.015

    Article  Google Scholar 

  • Shen DG, Sundar H, Xue Z, et al., 2005. Consistent estimation of cardiac motions by 4D image registration. LNCS, 3750: 902–910. https://doi.org/10.1007/11566489_111

    Google Scholar 

  • Sowell ER, Peterson BS, Kan E, et al., 2007. Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebr Cort, 17(7):1550–1560. https://doi.org/10.1093/cercor/bhl066

    Article  Google Scholar 

  • Sowell ER, Kan E, Yoshii J, et al., 2008. Thinning of sensorimotor cortices in children with tourette syndrome. Nat Neurosci, 11(6):637–639. https://doi.org/10.1038/nn.2121

    Article  Google Scholar 

  • Sporns O, 2011. The human connectome: a complex network. Ann New York Acad Sci, 1224(1):109–125. https://doi.org/10.1111/j.1749-6632.2010.05888.x

    Article  Google Scholar 

  • Squire LR, 1992. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 99(2):195–231.

    Article  Google Scholar 

  • Toga AW, Clark KA, Thompson PM, et al., 2012. Mapping the human connectome. Neurosurgery, 71(1):1–5. https://doi.org/10.1227/NEU.0b013e318258e9ff

    Article  Google Scholar 

  • van Essen DC, Smith SM, Barch DM, et al., 2013. The WU-Minn Human Connectome Project: an overview. NeuroImage, 80:62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041

    Article  Google Scholar 

  • van Hecke W, Sijbers J, de Backer S, et al., 2009. On the construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI analysis methods. NeuroImage, 46(3):692–707. https://doi.org/10.1016/j.neuroimage.2009.02.032

    Article  Google Scholar 

  • Wen Y, Peterson BS, Xu DR, 2013. A highly accurate, optical flow-based algorithm for nonlinear spatial normalization of diffusion tensor images. Int Joint Conf on Neural Networks, p.1–8. https://doi.org/10.1109/IJCNN.2013.6706989

    Google Scholar 

  • Xu DR, 1995. A Study of Analogical Generation of Image in Designing, in Computer Science. PhD Thesis, Zhejiang University, Hangzhou, China, p.120 (in Chinese).

    Google Scholar 

  • Xu DR, 1998. Automated analogical design of newspaper page layout. Chin J Comput, 21(12):1066–1073 (in Chinese). https://doi.org/10.3321/j.issn:0254-4164.1998.12.002

    Google Scholar 

  • Xu DR, Pan YH, 1995. Generation-oriented analogy reasoning. Sci China, 38(9):150–167

    Google Scholar 

  • Xu DR, Mori S, Shen DG, et al., 2003. Spatial normalization of diffusion tensor fields. Magn Reson Med, 50(1):175–182. https://doi.org/10.1002/mrm.10489

    Article  Google Scholar 

  • Xu DR, Hao XJ, Bansal R, et al., 2008. Seamless warping of diffusion tensor fields. IEEE Trans Med Imag, 27(3):285–299. https://doi.org/10.1109/TMI.2007.901428

    Article  Google Scholar 

  • Zhuang JC, Hrabe J, Kangarlu A, et al., 2006. Correction of eddy-current distortions in diffusion tensor images using the known directions and strengths of diffusion gradients. J Magn Reson Imag, 24(5):1188–1193. https://doi.org/10.1002/jmri.20727

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to Professor Yunhe Pan for the inspiring meeting and discussion in 2014, which initialized this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongrong Xu.

Additional information

Project supported by the National Key R&D Program of China (No. 2017YFC1308502) and the National Natural Science Foundation of China (No. 81471734)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Dai, F. & Lu, Y. A platform of digital brain using crowd power. Frontiers Inf Technol Electronic Eng 19, 78–90 (2018). https://doi.org/10.1631/FITEE.1700800

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1700800

Keywords

CLC number

Navigation