Optimal multi-degree reduction of C-Bézier surfaces with constraints

Article
  • 3 Downloads

Abstract

We propose an optimal approach to solve the problem of multi-degree reduction of C-Bézier surfaces in the norm L2 with prescribed constraints. The control points of the degree-reduced C-Bézier surfaces can be explicitly obtained by using a matrix operation that is based on the transfer matrix of the C-Bézier basis. With prescribed boundary constraints, this method can be applied to piecewise continuous patches or to a single patch with the combination of surface subdivision. The resulting piecewise approximating patches are globally G1 continuous. Finally, numerical examples are presented to show the effectiveness of the method.

Key words

C-Bézier surfaces Degree reduction Boundary constraints 

CLC number

TP391.72 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ait-Haddou, R., Bartoň, M., 2016. Constrained multi-degree reduction with respect to Jacobi norms. Comput. Aided Geom. Des., 42:23–30. https://doi.org/10.1016/j.cagd.2015.12.003MathSciNetCrossRefGoogle Scholar
  2. Chen, Q.Y., Wang, G.Z., 2003. A class of Bézier-like curves. Comput. Aided Geom. Des., 20(1):29–39. https://doi.org/10.1016/S0167-8396(03)00003-7CrossRefMATHGoogle Scholar
  3. Fan, J.H., Wu, Y.J., Lin, X., 2002. Subdivision algorithm and G1 condition for C-Bézier curves. J. Comput. Aided Des. Comput. Graph., 14(5):421–424 https://doi.org/10.3321/j.issn:1003-9775.2002.05.009Google Scholar
  4. Gospodarczyk, P., 2015. Degree reduction of Bézier curves with restricted control points area. Comput. Aided Des., 62:143–151. https://doi.org/10.1016/j.cad.2014.11.009MathSciNetCrossRefGoogle Scholar
  5. Huang, J.Z., Nguyen-Thanh, N., Zhou, K., 2017. Extended isogeometric analysis based on Bézier extraction for the buckling analysis of Mindlin-Reissner plates. Acta Mech., 228(9):3077–3093. https://doi.org/10.1007/s00707-017-1861-0MathSciNetCrossRefGoogle Scholar
  6. Liu, L.G., Zhang, L., Lin, B.B., et al., 2009. Fast approach for computing roots of polynomials using cubic clipping. Comput. Aided Geom. Des., 26(5):547–559. https://doi.org/10.1016/j.cagd.2009.02.003MathSciNetCrossRefMATHGoogle Scholar
  7. Mainar, E., Peña, J.M., 2002. A basis of C-Bézier splines with optimal properties. Comput. Aided Geom. Des., 19(4):291–295. https://doi.org/10.1016/S0167-8396(02)00089-4CrossRefMATHGoogle Scholar
  8. Nguyen-Thanh, N., Zhou, K., 2017. Extended isogeometric analysis based on PHT-splines for crack propagation near inclusions. Int. J. Numer. Methods Eng., 112(12):1777–1800. https://doi.org/10.1002/nme.5581CrossRefGoogle Scholar
  9. Nguyen-Thanh, N., Zhou, K., Zhuang, X., et al., 2017. Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling. Comput. Methods Appl. Mech. Eng., 316:1157–1178. https://doi.org/10.1016/j.cma.2016.12.002MathSciNetCrossRefGoogle Scholar
  10. Qin, X.Q., Wang, W.W., Hu, G., 2013. Degree reduction of C-Bézier curve based on genetic algorithm. Comput. Eng. Appl., 49(5):174–178. https://doi.org/10.3778/j.issn.1002-8331.1107-0346Google Scholar
  11. Rababah, A., Mann, S., 2013. Linear methods for G1, G2, and G3-multi-degree reduction of Bézier curves. Comput. Aided Des., 45(2):405–414. https://doi.org/10.1016/j.cad.2012.10.023MathSciNetCrossRefGoogle Scholar
  12. Shen, W.Q., Wang, G.Z., 2015. Geometric shapes of C-Bézier curves. Comput. Aided Des., 58:242–247. https://doi.org/10.1016/j.cad.2014.08.007MathSciNetCrossRefGoogle Scholar
  13. Shen, W.Q., Wang, G.Z., 2016. Degree elevation from Bézier curve to C-Bézier curve with corner cutting form. Appl. Math. A J. Chin. Univ., 31(2):165–176. https://doi.org/10.1007/s11766-016-3369-0CrossRefMATHGoogle Scholar
  14. Tan, P.F., Nguyen-Thanh, N., Zhou, K., 2017. Extended isogeometric analysis based on Bézier extraction for an FGM plate by using the two-variable refined plate theory. Theor. Appl. Fract. Mech., 89:127–138. https://doi.org/10.1016/j.tafmec.2017.02.002CrossRefGoogle Scholar
  15. Yang, Q.M., Wang, G.Z., 2004. Inflection points and singularities on C-curves. Comput. Aided Geom. Des., 21(2):207–213. https://doi.org/10.1016/j.cagd.2003.11.002MathSciNetCrossRefMATHGoogle Scholar
  16. Zhang, J.W., 1996. C-Curves: an extension of cubic curves. Comput. Aided Geom. Des., 13(3):199–217. https://doi.org/10.1016/0167-8396(95)00022-4MathSciNetCrossRefMATHGoogle Scholar
  17. Zheng, J.M., Wang, G.Z., 2003. Perturbing Bézier coefficients for best constrained degree reduction in the L2-norm. Graph Models, 65(6):351–368. https://doi.org/10.1016/j.gmod.2003.07.001CrossRefMATHGoogle Scholar
  18. Zhou, L., 2012. Algorithm for explicit multi-degree reduction of C-Bézier curves. J. Shanghai Marit. Univ., 33(4):86–90. https://doi.org/10.3969/j.issn.1672-9498.2012.04.017Google Scholar
  19. Zhou, L., Wang, G.J., 2009a. Optimal constrained multi-degree reduction of Bézier curves with explicit expressions based on divide and conquer. J. Zhejiang Univ.-Sci. A, 10(4):577–582. https://doi.org/10.1631/jzus.A0820290CrossRefMATHGoogle Scholar
  20. Zhou, L., Wang, G.J., 2009b. Constrained multi-degree reduction of Bézier surfaces using Jacobi polynomials. Comput. Aided Geom. Des., 26(3):259–270. https://doi.org/10.1016/j.cagd.2008.10.003CrossRefMATHGoogle Scholar
  21. Zhou, L., Wei, Y.W., Yao, Y.F., 2014. Optimal multi-degree reduction of Bézier curves with geometric constraints. Comput. Aided Des., 49:18–27. https://doi.org/10.1016/j.cad.2013.12.004MathSciNetCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Maritime UniversityShanghaiChina
  2. 2.Zhejiang Institute of Economics and TradeHangzhouChina
  3. 3.College of Fundamental StudiesShanghai University of Engineering ScienceShanghaiChina
  4. 4.Faculty of ScienceNingbo University of TechnologyNingboChina

Personalised recommendations