Advertisement

Model-free adaptive control for three-degree-of-freedom hybrid magnetic bearings

  • Ye Yuan
  • Yu-kun Sun
  • Qian-wen Xiang
  • Yong-hong Huang
  • Zhi-ying Zhu
Article
  • 37 Downloads

Abstract

Mathematical models are disappointing due to uneven distribution of the air gap magnetic field and significant unmodeled dynamics in magnetic bearing systems. The effectiveness of control deteriorates based on an inaccurate mathematical model, creating slow response speed and high jitter. To solve these problems, a model-free adaptive control (MFAC) scheme is proposed for a three-degree-of-freedom hybrid magnetic bearing (3-DoF HMB) control system. The scheme for 3-DoF HMB depends only on the control current and the objective balanced position, and it does not involve any model information. The design process of a parameter estimation algorithm is model-free, based directly on pseudo-partial-derivative (PPD) derived online from the input and output data information. The rotor start-of-suspension position of the HMB is regulated by auxiliary bearings with different inner diameters, and two kinds of operation situations (linear and nonlinear areas) are present to analyze the validity of MFAC in detail. Both simulations and experiments demonstrate that the proposed MFAC scheme handles the 3-DoF HMB control system with start-of-suspension response speed, smaller steady state error, and higher stability.

Key words

Model-free adaptive control Hybrid magnetic bearings Nonlinear areas Faster response Higher stability 

CLC number

TP273 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cao, X., Deng, Z.Q., 2010. A full-period generating mode for bearingless switched reluctance generators. IEEE Trans. Appl. Supercond., 20(3):1072–1076. https://doi.org/10.1109/TASC.2010.2041206CrossRefGoogle Scholar
  2. Casella, F., 2004. Modeling, simulation, control, and optimization of a geothermal power plant. IEEE Trans. Energy Conv., 19(1):170–178. https://doi.org/10.1109/TEC.2003.821823CrossRefGoogle Scholar
  3. Chen, L., Hofmann, W., 2012. Speed regulation technique of one bearingless 8/6 switched reluctance motor with simpler single winding structure. IEEE Trans. Ind. Electron., 59(6):2592–2600. https://doi.org/10.1109/TIE.2011.2163289CrossRefGoogle Scholar
  4. Chen, S.L., Weng, C.C., 2010. Robust control of a voltagecontrolled three-pole active magnetic bearing system. IEEE/ASME Trans. Mechatron., 15(3):381–388. https://doi.org/10.1109/TMECH.2009.2027015CrossRefGoogle Scholar
  5. Cimuca, G., Breban, S., Radulescu, M.M., et al., 2010. Design and control strategies of an induction-machine-based flywheel energy storage system associated to a variablespeed wind generator. IEEE Trans. Energy Conv., 25(2):526–534. https://doi.org/10.1109/TEC.2010.2045925CrossRefGoogle Scholar
  6. Fang, J.C., Sun, J.J., Liu, H., et al., 2010. A novel 3-DoF axial hybrid magnetic bearing. IEEE Trans. Magn., 46(12):4034–4045. https://doi.org/10.1109/TMAG.2010.2074206CrossRefGoogle Scholar
  7. Formentin, S., Savaresi, S.M., Del Re, L., 2012. Non-iterative direct data-driven controller tuning for multivariable systems: theory and application. IET Contr. Theory Appl., 6(9):1250–1257. https://doi.org/10.1049/iet-cta.2011.0204MathSciNetCrossRefGoogle Scholar
  8. Han, B.C., Zheng, S.Q., Le, Y., et al., 2013. Modeling and analysis of coupling performance between passive magnetic bearing and hybrid magnetic radial bearing for magnetically suspended flywheel. IEEE Trans. Magn., 49(10):5356–5370. https://doi.org/10.1109/TMAG.2013.2263284CrossRefGoogle Scholar
  9. Hildebrand, R., Lecchini, A., Solari, G., et al., 2005. Asymptotic accuracy of iterative feedback tuning. IEEE Trans. Autom. Contr., 50(8):1182–1185. https://doi.org/10.1109/TAC.2005.852551MathSciNetCrossRefGoogle Scholar
  10. Kang, M.S., Lyou, J., Lee, J.K., 2010. Sliding mode control for an active magnetic bearing system subject to base motion. Mechatronics, 20(1):171–178. https://doi.org/10.1016/j.mechatronics.2009.09.010CrossRefGoogle Scholar
  11. Lee, J., Jeong, S., Han, Y.H., et al., 2011. Concept of cold energy storage for superconducting flywheel energy storage system. IEEE Trans. Appl. Supercond., 21(3):2221–2224. https://doi.org/10.1109/TASC.2010.2094177CrossRefGoogle Scholar
  12. Mišković, L., Karimi, A., Bonvin, D., et al., 2007. Correlationbased tuning of decoupling multivariable controllers. Automatica, 43(9):1481–1494. https://doi.org/10.1016/j.automatica.2007.02.006MathSciNetCrossRefGoogle Scholar
  13. Morrison, C.R., Siebert, M.W., Ho, E.J., 2008. Electromagnetic forces in a hybrid magnetic-bearing switchedreluctance motor. IEEE Trans. Magn., 44(12):4626–4638. https://doi.org/10.1109/TMAG.2008.2002891CrossRefGoogle Scholar
  14. O’Sullivan, D.L., Lewis, A.W., 2011. Generator selection and comparative performance in offshore oscillating water column ocean wave energy converters. IEEE Trans. Energy Conv., 26(2):603–614. https://doi.org/10.1109/TEC.2010.2093527CrossRefGoogle Scholar
  15. Sala, A., Esparza, A., 2005. Extensions to “virtual reference feedback tuning: a direct method for the design of feedback controllers”. Automatica, 41(8):1473–1476. https://doi.org/10.1016/j.automatica.2005.02.008MathSciNetCrossRefGoogle Scholar
  16. Sarkar, S., Ajjarapu, V., 2011. MW resource assessment model for a hybrid energy conversion system with wind and solar resources. IEEE Trans. Sustain. Energy, 2(4):383–391. https://doi.org/10.1109/TSTE.2011.2148182CrossRefGoogle Scholar
  17. Subkhan, M., Komori, M., 2011. New concept for flywheel energy storage system using SMB and PMB. IEEE Trans. Appl. Supercond., 21(3):1485–1488. https://doi.org/10.1109/TASC.2010.2098470CrossRefGoogle Scholar
  18. Wakitani, S., Yamamoto, T., 2014. Design and application of a data-driven PID controller. Proc. IEEE Conf. on Control Applications, p.1443–1448. https://doi.org/10.1109/CCA.2014.6981527Google Scholar
  19. Wang, K., Wang, D., Lin, H.Y., et al., 2014. Analytical modeling of permanent magnet biased axial magnetic bearing with multiple air gaps. IEEE Trans. Magn., 50(11):1–4. https://doi.org/10.1109/TMAG.2014.2330843Google Scholar
  20. Wei, K.Y., Liu, D.Z., Meng, J., et al., 2010. Design and simulation of a 12-phase flywheel energy storage generator system with linearly dynamic load. IEEE Trans. Appl. Supercond., 20(3):1050–1054. https://doi.org/10.1109/TASC.2010.2040599CrossRefGoogle Scholar
  21. Xu, J.X., Hou, Z.S., 2009. Notes on data-driven system approaches. Acta Autom. Sin., 35(6):668–675. https://doi.org/10.1016/S1874-1029(08)60090-7CrossRefGoogle Scholar
  22. Yang, G., Deng, Z.Q., Cao, X., et al., 2008. Optimal winding arrangements of a bearingless switched reluctance motor. IEEE Trans. Power Electron., 23(6):3056–3066. https://doi.org/10.1109/TPEL.2008.2002070CrossRefGoogle Scholar
  23. Yang, Y., Deng, Z.Q., Yang, G., et al., 2010. A control strategy for bearingless switched-reluctance motors. IEEE Trans. Power Electron., 25(11):2807–2819. https://doi.org/10.1109/TPEL.2010.2051684CrossRefGoogle Scholar
  24. Yuan, Y., Sun, Y.K., Huang, Y.H., et al., 2015. Harmony chaotic search optimal design of single winding bearingless switched reluctance flywheel motors. Tran. China Electrotechn. Soc., 30(2):180–188 (in Chinese). https://doi.org/10.3969/j.issn.1000-6753.2015.02.024Google Scholar
  25. Zhang, C., Tseng, K.J., 2007. A novel flywheel energy storage system with partially-self-bearing flywheel-rotor. IEEE Trans. Energy Conv., 22(2):477–487. https://doi.org/10.1109/TEC.2005.858088CrossRefGoogle Scholar
  26. Zhu, Y.M., Hou, Z.S., 2015. Controller dynamic linearisationbased model-free adaptive control framework for a class of non-linear system. IET Contr. Theory Appl., 9(7):1162–1172. https://doi.org/10.1049/iet-cta.2014.0743CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Ye Yuan
    • 1
  • Yu-kun Sun
    • 2
  • Qian-wen Xiang
    • 1
  • Yong-hong Huang
    • 1
  • Zhi-ying Zhu
    • 2
  1. 1.School of Electrical and Information EngineeringJiangsu UniversityZhenjiangChina
  2. 2.College of Electrical EngineeringNanjing Institute of TechnologyNanjingChina

Personalised recommendations