Phase problems in optical imaging

  • Guo-hai Situ
  • Hai-chao Wang


Because the phase contains more information about the field compared to the amplitude, measurement of the phase is encountered in many branches of modern science and engineering. Direct measurement of the phase is difficult in the visible regime of the electromagnetic wave. One must employ computational techniques to calculate the phase from the captured intensity. In this paper, we provide a review of our recent work on iterative phase retrieval techniques and their applications in optical imaging.

Key words

Phase retrieval Phase imaging Computational imaging Gerchberg-Saxton algorithm Optical encryption Computer-generated hologram 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, L.J., Oxley, M.P., 2001. Phase retrieval from series of images obtained by defocus variation. Opt. Commun., 199(1–4):65–75. Scholar
  2. Anand, A., Chhaniwal, V.K., Javidi, B., 2011. Quantitative cell imaging using single beam phase retrieval method. J. Biomed. Opt., 16(6):060503. Scholar
  3. Bao, P., Zhang, F., Pedrini, G., et al., 2008. Phase retrieval using multiple illumination wavelengths. Opt. Lett., 33(4):309–311. Scholar
  4. Bao, P., Situ, G., Pedrini, G., et al., 2012. Lensless phase microscopy using phase retrieval with multiple illumination wavelengths. Appl. Opt., 51(22):5486–5494. Scholar
  5. Bates, R.H.T., 1984. Uniqueness of solutions to twodimensional Fourier phase problems of localized and positive images. Comput. Vis. Graph. Image Process., 25(2):205–217. Scholar
  6. Bauschke, H.H., Combettes, P.L., Luke, D.R., 2002. Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Am. A, 19(7):1334–1345. Scholar
  7. Bian, L., Suo, J., Situ, G., et al., 2014. Content adaptive illumination for Fourier ptychography. Opt. Lett., 39(23):6648–6651. Scholar
  8. Bruck, Y.M., Sodin, L.G., 1979. On the ambiguity of the image reconstruction problem. Opt. Commun., 30(3):304–308. Scholar
  9. Buckley, E., 2011. Holographic laser projection. J. Disp. Tech., 7(3):135–140. Scholar
  10. Chang, H.T., Lu, W.C., Kuo, C.J., 2002. Multiple-phase retrieval for optical security systems by use of randomphase encoding. Appl. Opt., 41(23):4825–4834. Scholar
  11. Chen, W., Chen, X., Sheppard, C.J.R., 2010. Optical image encryption based on diffractive imaging. Opt. Lett., 35(22):3817–3819. Scholar
  12. Chen, W., Chen, X., Anand, A., et al., 2013a. Optical encryption using multiple intensity samplings in the axial domain. J. Opt. Soc. Am. A, 30(5):806–812. Scholar
  13. Chen, W., Situ, G., Chen, X., 2013b. High-flexibility optical encryption via aperture movement. Opt. Expr., 21(21):24680–24691. Scholar
  14. Faulkner, H.M.L., Rodenburg, J.M., 2004. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys. Rev. Lett., 93(2):023903. Scholar
  15. Fienup, J.R., 1980. Iterative method applied to image reconstruction and to computer-generated holograms. Opt. Eng., 19(3):297–305. Scholar
  16. Fienup, J.R., 1982. Phase retrieval algorithms: a comparison. Appl. Opt., 21(15):2758–2769. Scholar
  17. Fienup, J.R., Wackerman, C.C., 1986. Phase-retrieval stagnation problems and solutions. J. Opt. Soc. Am. A, 3(11):1897–1907. Scholar
  18. Gerchberg, R.W., Saxton, W.O., 1972. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35(2):237–246.Google Scholar
  19. Guizar-Sicairos, M., Fienup, J.R., 2012. Understanding the twin-image problem in phase retrieval. J. Opt. Soc. Am. A, 29(11):2367–2375. Scholar
  20. Guo, C., Liu, S., Sheridan, J.T., 2015a. Iterative phase retrieval algorithms. Part I: optimization. Appl. Opt., 54(15):4698–4708. Scholar
  21. Guo, C., Liu, S., Sheridan, J.T., 2015b. Iterative phase retrieval algorithms. Part II: attacking optical encryption systems. Appl. Opt., 54(15):4709–4718. Scholar
  22. Guo, C., Wei, C., Tan, J., et al., 2017. A review of iterative phase retrieval for measurement and encryption. Opt. Laser. Eng., 89:2–12. Scholar
  23. Gülses, A.A., Jenkins, B.K., 2013. Cascaded diffractive optical elements for improved multiplane image reconstruction. Appl. Opt., 52(15):3608–3616. Scholar
  24. Hayes, M., 1982. The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform. IEEE Trans. Acoust. Speech Signal Process., 30(2):140–154. Scholar
  25. Healy, J.J., Kutay, M.A., Ozaktas, H.M., et al., 2016. Linear Canonical Transforms: Theory and Applications. Springer New York. Scholar
  26. Izraelevitz, D., Lim, J., 1987. A new direct algorithm for image reconstruction from Fourier transform magnitude. IEEE Trans. Acoust. Speech Signal Process., 35(4):511–519. Scholar
  27. Johnson, E.G., Brasher, J.D., 1996. Phase encryption of biometrics in diffractive optical elements. Opt. Lett., 21(16):1271–1273. Scholar
  28. Kreis, T., 2005. Handbook of Holographic Interferometry: Optical and Digital Methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. Scholar
  29. Levi, A., Stark, H., 1984. Image restoration by the method of generalized projections with application to restoration from magnitude. J. Opt. Soc. Am. A, 1(9):932–943. Scholar
  30. Li, Y., Kreske, K., Rosen, J., 2000. Security and encryption optical systems based on a correlator with significant output images. Appl. Opt., 39(29):5295–5301. Scholar
  31. Lu, C.H., Barsi, C., Williams, M.O., et al., 2013. Phase retrieval using nonlinear diversity. Appl. Opt., 52(10): D92–D96. Scholar
  32. Malacara, D., Servín, M., Malacara, Z., 2005. Interferogram Analysis for Optical Testing (2nd Ed.). CRC Press. Scholar
  33. Marchesini, S., Gehrz, R.D., Roellig, T.L., et al., 2007. A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum., 78(1):11301.1–11301.10.CrossRefGoogle Scholar
  34. Marrison, J., Räty, L., Marriott, P., et al., 2013. Ptychography—a label free, high-contrast imaging technique for live cells using quantitative phase information. Sci. Rep., 3(32):2369. Scholar
  35. Millane, R.P., 1990. Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A, 7(3):394–411. Scholar
  36. Nakano, K., Takeda, M., Suzuki, H., et al., 2014. Security analysis of phase-only DRPE based on known-plaintext attack using multiple known plaintext-ciphertext pairs. Appl. Opt., 53(28):6435–6443. Scholar
  37. Nolte, D.D., 2012. Optical Interferometry for Biology and Medicine. Springer New York, USA. Scholar
  38. Oppenheim, A.V., Lim, J.S., 1981. The importance of phase in signals. Proc. IEEE, 69(5):529–541. Scholar
  39. Refregier, P., Javidi, B., 1995. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett., 20(7):767–769. Scholar
  40. Rodenburg, J.M., Faulkner, H.M.L., 2004. A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett., 85(20):4795–4797. Scholar
  41. Shechtman, Y., Eldar, Y.C., Cohen, O., et al., 2015. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag., 32(3): 87–109. Scholar
  42. Shi, Y., Situ, G., Zhang, J., 2007. Multiple-image hiding in the Fresnel domain. Opt. Lett., 32(13):1914–1916. Scholar
  43. Shi, Y., Li, T., Wang, Y., et al., 2013. Optical image encryption via ptychography. Opt. Lett., 38(9):1425–1427. Scholar
  44. Situ, G., Yan, L.T., 2010. Determination of polymer morphology from the intensity measurement in the reciprocal space. Eur. Poly. J., 46(9):1891–1895. Scholar
  45. Situ, G., Zhang, J., 2004. A lensless optical security system based on computer-generated phase only masks. Opt. Commun., 232(1–6):115–122. Scholar
  46. Situ, G., Gopinathan, U., Monaghan, D.S., et al., 2007. Cryptanalysis of optical security systems with significant output images. Appl. Opt., 46(22):5257–5262. Scholar
  47. Situ, G., Monaghan, D.S., Naughton, T.J., et al., 2008. Collision in double random phase encoding. Opt. Commun., 281(20):5122–5125. Scholar
  48. Situ, G., Pedrini, G., Osten, W., 2010. Strategy for cryptanalysis of optical encryption in the Fresnel domain. Appl. Opt., 49(3):457–462. Scholar
  49. Situ, G., Suo, J., Dai, Q., 2015. Generalized iterative phase retrieval algorithms and their applications. Proc. IEEE 13th Int. Conf. on Industrial Informatics, p.713–720. Scholar
  50. Walther, A., 1963. The question of phase retrieval in optics. Opt. Acta: Int. J. Opt., 10(1):41–49. Scholar
  51. Wang, H., Yue, W., Song, Q., et al., 2017. A hybrid Gerchberg-Saxton-like algorithm for DOE and CGH calculation. Opt. Lasers Eng., 89:109–115. Scholar
  52. Wang, R.K., Watson, L.A., Chatwin, C., 1996. Random phase encoding for optical security. Opt. Eng., 35(9):2464–2469. Scholar
  53. Wyrowski, F., Bryngdahl, O., 1988. Iterative Fouriertransform algorithm applied to computer holography. J. Opt. Soc. Am. A, 5(7):1058–1065. Scholar
  54. Zaleta, D., Larsson, M., Daschner, W., et al., 1995. Design methods for space-variant optical interconnections to achieve optimum power throughput. Appl. Opt., 34(14):2436–2447. Scholar
  55. Zhang, F., Pedrini, G., Osten, W., 2007. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Phys. Rev. A, 75(4):810–814. Scholar
  56. Zhang, F., Chen, B., Morrison, G.R., et al., 2016. Phase retrieval by coherent modulation imaging. Nat. Commun., 7:13367. Scholar
  57. Zhang, Y., Pedrini, G., Osten, W., et al., 2003. Whole optical wavefield reconstruction from double or multi in-line holograms by phase retrieval algorithm. Opt. Expr., 11(24):3234–3241. Scholar
  58. Zheng, G., Horstmeyer, R., Yang, C., 2013. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photon., 7(9):739–746. Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations