Efficient scheme of low-dose CT reconstruction using TV minimization with an adaptive stopping strategy and sparse dictionary learning for post-processing



Recently, low-dose computed tomography (CT) has become highly desirable because of the growing concern for the potential risks of excessive radiation. For low-dose CT imaging, it is a significant challenge to guarantee image quality while reducing radiation dosage. Compared with classical filtered backprojection algorithms, compressed sensing-based iterative reconstruction has achieved excellent imaging performance, but its clinical application is hindered due to its computational inefficiency. To promote low-dose CT imaging, we propose a promising reconstruction scheme which combines total-variation minimization and sparse dictionary learning to enhance the reconstruction performance, and properly schedule them with an adaptive iteration stopping strategy to boost the reconstruction speed. Experiments conducted on a digital phantom and a physical phantom demonstrate a superior performance of our method over other methods in terms of image quality and computational efficiency, which validates its potential for low-dose CT imaging.

Key words

Low-dose computed tomography (CT) CT imaging Total variation Sparse dictionary learning 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharon, M., Elad, M., Bruckstein, A.M., 2006. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process., 54(11):4311–4322. https://doi.org/10.1109/TSP.2006.881199CrossRefMATHGoogle Scholar
  2. Anderson, A.H., Kak, A.C., 1984. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason. Imag., 6(1):81–94. https://doi.org/10.1177/016173468400600107CrossRefGoogle Scholar
  3. Barzilai, J., Borwein, J., 1988. Two-point step size gradient methods. IMA J. Numer. Anal., 8(1):141–148. https://doi.org/10.1093/imanum/8.1.141MathSciNetCrossRefMATHGoogle Scholar
  4. Candes, E.J., Romberg, J., Tao, T., 2006. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489–509. https://doi.org/10.1109/TIT.2005.862083MathSciNetCrossRefMATHGoogle Scholar
  5. Chen, Y., Shi, L.Y., Feng, Q.J., et al., 2014. Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans. Med. Imag., 33(12):2271–2292. https://doi.org/10.1109/TMI.2014.2336860CrossRefGoogle Scholar
  6. Dabov, K., Foi, A., Katkovnik, V., et al., 2007. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process., 16(8):2080–2095. https://doi.org/10.1109/TIP.2007.901238MathSciNetCrossRefGoogle Scholar
  7. Dong, W.S., Zhang, L., Shi, G.M., et al., 2013. Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process., 22(4):1620–1630. https://doi.org/10.1109/TIP.2012.2235847MathSciNetCrossRefMATHGoogle Scholar
  8. Elad, M., Aharon, M., 2006. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process., 15(12):3736–3745. https://doi.org/10.1109/TIP.2006.881969MathSciNetCrossRefGoogle Scholar
  9. Ginat, D.T., Gupta, R., 2014. Advances in computed tomography imaging technology. Ann. Rev. Biomed. Eng., 16:431–453. https://doi.org/10.1146/annurev-bioeng-121813-113601CrossRefGoogle Scholar
  10. Han, X., Bian, J.G., Ritman, E.L., et al., 2012. Optimizationbased reconstruction of sparse images from few-view projections. Phys. Med. Biol., 57(16):5245–5273. https://doi.org/10.1088/0031-9155/57/16/5245CrossRefGoogle Scholar
  11. Jia, X., Dong, B., Lou, Y.F., et al., 2011. GPU-based iterative cone-beam CT reconstruction using tight frame regularization. Phys. Med. Biol., 56:3787–3807. https://doi.org/10.1088/0031-9155/56/13/004CrossRefGoogle Scholar
  12. Liu, J., Chen, Y., Hu, Y., et al., 2016. Low-dose CBCT reconstruction via 3D dictionary learning. IEEE 13th Int. Symp. on Biomedical Imaging, p.735–738. https://doi.org/10.1109/ISBI.2016.7493371Google Scholar
  13. Lustig, M., Donoho, D.L., Santos, J.M., et al., 2008. Compressed sensing MRI. IEEE Signal Process. Mag., 25(2):72–82. https://doi.org/10.1109/MSP.2007.914728CrossRefGoogle Scholar
  14. Niu, T.Y., Zhu, L., 2012. Accelerated barrier optimization compressed sensing (ABOCS) reconstruction for conebeam CT: phantom studies. Med. Phys., 39(7):4588–4598. https://doi.org/10.1118/1.4729837CrossRefGoogle Scholar
  15. Niu, T.Y., Ye, X.J., Fruhauf, Q., et al., 2014. Accelerated barrier optimization compressed sensing (ABOCS) for CT reconstruction with improved convergence. Phys. Med. Biol., 59(7):1801–1814. https://doi.org/10.1088/0031-9155/59/7/1801CrossRefGoogle Scholar
  16. Park, J.C., Song, B.Y., Kim, J.S., et al., 2012. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT. Med. Phys., 39(3):1207–1217. https://doi.org/10.1118/1.3679865CrossRefGoogle Scholar
  17. Siddon, R.L., 1985. Prism representation: a 3D ray-tracing algorithm for radiotherapy application. Phys. Med. Biol., 30:817–824. https://doi.org/10.1088/0031-9155/30/8/005CrossRefGoogle Scholar
  18. Sidky, E.Y., Kao, C.M., Pan, X.C., 2008. Image reconstruction in circular cone-beam computed tomogrphy by constrained, total-variation minimization. Phys. Med. Biol., 53:4777–4807. https://doi.org/10.1088/0031-9155/53/17/021CrossRefGoogle Scholar
  19. Wang, Z., Bovik, A.C., Sheikh, H.R., et al., 2004. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861CrossRefGoogle Scholar
  20. Xu, Q., Yu, H.Y., Mou, X.Q., et al., 2012. Low dose X-ray reconstruciton via dictionary learning. IEEE Trans. Med. Imag., 31(9):1682–1697. https://doi.org/10.1109/TMI.2012.2195669CrossRefGoogle Scholar
  21. Yan, H., Cervino, L., Jia, X., et al., 2012. A comprehensive study on the relationship between the image quality and imaging dose in low-dose cone beam CT. Phys. Med. Biol., 57(7):2063–2080. https://doi.org/10.1088/0031-9155/57/7/2063CrossRefGoogle Scholar
  22. Yan, H., Wang, X.Y., Shi, F., et al., 2014. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: cone/ring artifact correction and multiple GPU implementation. Med. Phys., 41(11):1–15. https://doi.org/10.1118/1.4898324Google Scholar
  23. Yu, H.Y., Wang, G., 2010. A soft-threshold filtering approach for reconstruction from a limited number of projections. Phys. Med. Biol., 55:3905–3916. https://doi.org/10.1088/0031-9155/55/13/022CrossRefGoogle Scholar
  24. Yuan, M., Yang, B.X., Ma, Y.D., et al., 2015. Multi-scale UDCT dictionary learning based highly undersampled MR image reconstruction using patch-based constraint splitting augmented Lagrangian shrinkage algorithm. Front. Inform. Technol. Electron. Eng., 16(2):1069–1087. https://doi.org/10.1631/FITEE.1400423CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Information Science and Electronic EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations