Advertisement

Characteristic of the equivalent impedance for an m×n RLC network with an arbitrary boundary

  • Zhi-zhong Tan
  • Hong Zhu
  • Jihad H. Asad
  • Chen Xu
  • Hua Tang
Article

Abstract

Considerable progress has been made recently in the development of techniques to determine exactly two-point resistances in networks of various topologies. In particular, a general resistance formula of a non-regular m×n resistor network with an arbitrary boundary is determined by the recursion-transform (RT) method. However, research on the complex impedance network is more difficult than that on the resistor network, and it is a problem worthy of study since the equivalent impedance has many different properties from equivalent resistance. In this study, the equivalent impedance of a non-regular m×n RLC network with an arbitrary boundary is studied based on the resistance formula, and the oscillation characteristics and resonance properties of the equivalent impedance are discovered. In the RLC network, it is found that our formula leads to the occurrence of resonances at the boundary condition holding a series of specific values with an external alternating current source. This curious result suggests the possibility of practical applications of our formula to resonant circuits.

Key words

RLC network Resonance properties Oscillation characteristics Amplitude-frequency 

CLC number

O441.1 TN711.3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asad, J.H., 2013a. Exact evaluation of the resistance in an infinite face-centered cubic network. J. Stat. Phys., 150(6):1177–1182. https://doi.org/10.1007/s10955-013-0716-xMathSciNetCrossRefGoogle Scholar
  2. Asad, J.H., 2013b. Infinite simple 3D cubic network of identical capacitors. Mod. Phys. Lett. B, 27(15):1350112. https://doi.org/10.1142/S0217984913501121CrossRefGoogle Scholar
  3. Asad, J.H., Diab, A.A., Hijjawi, R.S., et al., 2013. Infinite face-centered-cubic network of identical resistors: application to lattice Green’s function. Eur. Phys. J. Plus, 128:2. https://doi.org/10.1140/epjp/i2013-13002-8CrossRefGoogle Scholar
  4. Bao, A., Tao, H.S., Liu, H.D., et al., 2014. Quantum magnetic phase transition in square-octagon lattice. Sci. Rep., 4:6918. https://doi.org/10.1038/srep06918CrossRefGoogle Scholar
  5. Baule, A., Mari, R., Bo, L., et al., 2013. Mean-field theory of random close packings of axisymmetric particles. Nat. Commun., 4:2194. https://doi.org/10.1038/ncomms3194CrossRefGoogle Scholar
  6. Bianco, B., Giordano, S., 2003. Electrical characterization of linear and non-linear random networks and mixtures. Int. J. Circ. Theory Appl., 31(2):199–218. https://doi.org/10.1002/cta.217CrossRefGoogle Scholar
  7. Chair, N., 2012. Exact two-point resistance, and the simple random walk on the complete graph minus N edges. Ann. Phys., 327(12):3116–3129. https://doi.org/10.1016/j.aop.2012.09.002MathSciNetCrossRefGoogle Scholar
  8. Chair, N., 2014a. The effective resistance of the N-cycle graph with four nearest neighbors. J. Stat. Phys., 154(4):1177–1190. https://doi.org/10.1007/s10955-014-0916-zMathSciNetCrossRefGoogle Scholar
  9. Chair, N., 2014b. Trigonometrical sums connected with the chiral Potts model, Verlinde dimension formula, twodimensional resistor network, and number theory. Ann. Phys., 341:56–76. https://doi.org/10.1016/j.aop.2013.11.012MathSciNetCrossRefGoogle Scholar
  10. Chamberlin, R.V., 2000. Mean-field cluster model for the critical behaviour of ferromagnets. Nature, 408:337–339. https://doi.org/10.1038/35042534CrossRefGoogle Scholar
  11. Chitra, R., Kotliar, G., 2000. Dynamical mean-field theory and electronic structure calculations. Phys. Rev. B, 62:12715. https://doi.org/10.1103/PhysRevB.62.12715CrossRefGoogle Scholar
  12. Cserti, J., 2000. Application of the lattice Green’s function for calculating the resistance of an infinite network of resistors. Am. J. Phys., 68(10):896–906. https://doi.org/10.1119/1.1285881CrossRefGoogle Scholar
  13. Essam, J.W., Tan, Z.Z., Wu, F.Y., 2014. Resistance between two nodes in general position on an m×n fan network. Phys. Rev. E, 90(3):032130. https://doi.org/10.1103/PhysRevE.90.032130CrossRefGoogle Scholar
  14. Essam, J.W., Izmailyan, N.S., Kenna, R., et al., 2015. Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a ‘hammock’ network. R. Soc. Open Sci., 2:140420. https://doi.org/10.1098/rsos.140420MathSciNetCrossRefGoogle Scholar
  15. Gabelli, J., Fève, G., Berroir, J.M., et al., 2006. Violation of Kirchhoff’s laws for a coherent RC circuit. Science, 313(5786):499–502. https://doi.org/10.1126/science.1126940CrossRefGoogle Scholar
  16. Georges, A., Kotliar, G., Krauth, W., et al., 1996. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys., 68(1):13–125. https://doi.org/10.1103/RevModPhys.68.13MathSciNetCrossRefGoogle Scholar
  17. Giordano, S., 2005. Disordered lattice networks: general theory and simulations. Int. J. Circ. Theory Appl., 33(6):519–540. https://doi.org/10.1002/cta.335CrossRefGoogle Scholar
  18. Haule, K., 2007. Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys. Rev. B, 75(15):155113. https://doi.org/10.1103/PhysRevB.75.155113CrossRefGoogle Scholar
  19. Izmailian, N.S., Huang, M.C., 2010. Asymptotic expansion for the resistance between two maximum separated nodes on an M by N resistor network. Phys. Rev. E, 82(1):011125. https://doi.org/10.1103/PhysRevE.82.011125CrossRefGoogle Scholar
  20. Izmailian, N.S., Kenna, R., 2014. A generalised formulation of the Laplacian approach to resistor networks. J. Stat. Mech. Theory Exp., 2014(9):09016. https://doi.org/10.1088/1742-5468/2014/09/P09016CrossRefGoogle Scholar
  21. Izmailian, N.S., Kenna, R., Wu, F.Y., 2014. The two-point resistance of a resistor network: a new formulation and application to the cobweb network. J. Phys. A, 47(3):035003. https://doi.org/10.1088/1751-8113/47/3/035003CrossRefGoogle Scholar
  22. Kirchhoff, G., 1847. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys., 148(12):497–508 (in German). https://doi.org/10.1002/andp.18471481202CrossRefGoogle Scholar
  23. Kirkpatrick, S., 1973. Percolation and conduction. Rev. Mod. Phys., 45(4):574–588. https://doi.org/10.1103/RevModPhys.45.574CrossRefGoogle Scholar
  24. Klein, D.J., Randić, M., 1993. Resistance distance. J. Math. Chem., 12(1):81–95. https://doi.org/10.1007/BF01164627MathSciNetCrossRefGoogle Scholar
  25. Tan, Z.Z., 2011. Resistance Network Moder. Xidian University Press, Xi’an, China, p.28–146 (in Chinese).Google Scholar
  26. Tan, Z.Z., 2015a. Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary. Chin. Phys. B, 24(2):020503. https://doi.org/10.1088/1674-1056/24/2/020503CrossRefGoogle Scholar
  27. Tan, Z.Z., 2015b. Recursion-transform method for computing resistance of the complex resistor network with three arbitrary boundaries. Phys. Rev. E, 91(5):052122. https://doi.org/10.1103/PhysRevE.91.052122MathSciNetCrossRefGoogle Scholar
  28. Tan, Z.Z., 2015c. Recursion-transform method to a nonregular m×n cobweb with an arbitrary longitude. Sci. Rep., 5:11266. https://doi.org/10.1038/srep11266CrossRefGoogle Scholar
  29. Tan, Z.Z., 2017. Two-point resistance of a non-regular cylindrical network with a zero resistor axis and two arbitrary boundaries. Commun. Theor. Phys., 67(3):280–288. https://doi.org/10.1088/0253-6102/67/3/280CrossRefGoogle Scholar
  30. Tan, Z.Z., Fang, J.H., 2015. Two-point resistance of a cobweb network with a 2r boundary. Commun. Theor. Phys., 63(1):36–44. https://doi.org/10.1088/0253-6102/63/1/07MathSciNetCrossRefGoogle Scholar
  31. Tan, Z.Z., Zhang, Q.H., 2015. Formulae of resistance between two corner nodes on a common edge of the m×n rectangular network. Int. J. Circ. Theory Appl., 43(7):944–958. https://doi.org/10.1002/cta.1988CrossRefGoogle Scholar
  32. Tan, Z.Z., Zhang, Q.H., 2017. Calculation of the equivalent resistance and impedance of the cylindrical network based on recursion-transform method. Acta Phys. Sin., 66(7):070501 (in Chinese). https://doi.org/10.7498/aps.66.070501Google Scholar
  33. Tan, Z.Z., Zhou, L., Yang, J.H., 2013. The equivalent resistance of a 3×n cobweb network and its conjecture of an m×n cobweb network. J. Phys. A, 46:195202. https://doi.org/10.1088/1751-8113/46/19/195202MathSciNetCrossRefGoogle Scholar
  34. Tan, Z.Z., Essam, J.W., Wu, F.Y., 2014. Two-point resistance of a resistor network embedded on a globe. Phys. Rev. E, 90(1):012130. https://doi.org/10.1103/PhysRevE.90.012130CrossRefGoogle Scholar
  35. Tzeng, W.J., Wu, F.Y., 2006. Theory of impedance networks: the two-point impedance and LC resonances. J. Phys. A: Math. Gen., 39(27):8579–8591. https://doi.org/10.1088/0305-4470/39/27/002MathSciNetCrossRefGoogle Scholar
  36. Whan, C.B., Lobb, C.J., 1996. Complex dynamical behavior in RCL shunted Josephson tunnel junctions. Phys. Rev. E, 53(1):405–413. https://doi.org/10.1103/PhysRevE.53.405CrossRefGoogle Scholar
  37. Wu, F.Y., 2004. Theory of resistor networks: the two-point resistance. J. Phys. A, 37(26):6653–6673. https://doi.org/10.1088/0305-4470/37/26/004MathSciNetCrossRefGoogle Scholar
  38. Xiao, W.J., Gutman, I., 2003. Resistance distance and Laplacian spectrum. Theor. Chem. Acc., 110(4):284–289. https://doi.org/10.1007/s00214-003-0460-4CrossRefGoogle Scholar
  39. Zhou, L., Tan, Z.Z., Zhang, Q.H., 2017. A fractional-order multifunctional n-step honeycomb RLC circuit network. Front. Inform. Technol. Electron. Eng., 18(8):1186–1196. https://doi.org/10.1631/FITEE.1601560CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhysicsNantong UniversityNantongChina
  2. 2.College of ScienceChangzhou Institute of TechnologyChangzhouChina
  3. 3.Department of PhysicsPalestine Technical UniversityTulkarmPalestine
  4. 4.School of Electronics and InformationNantong UniversityNantongChina
  5. 5.Department of PhysicsYunhe Teachers CollegePizhouChina

Personalised recommendations