A non-stationary channel model for 5G massive MIMO systems

  • Jian-qiao Chen
  • Zhi Zhang
  • Tian Tang
  • Yu-zhen Huang
Article

Abstract

We propose a novel channel model for massive multiple-input multiple-out (MIMO) communication systems that incorporate the spherical wave-front assumption and non-stationary properties of clusters on both the array and time axes. Because of the large dimension of the antenna array in massive MIMO systems, the spherical wave-front is assumed to characterize near-field effects resulting in angle of arrival (AoA) shifts and Doppler frequency variations on the antenna array. Additionally, a novel visibility region method is proposed to capture the non-stationary properties of clusters at the receiver side. Combined with the birth-death process, a novel cluster evolution algorithm is proposed. The impacts of cluster evolution and the spherical wave-front assumption on the statistical properties of the channel model are investigated. Meanwhile, corresponding to the theoretical model, a simulation model with a finite number of rays that capture channel characteristics as accurately as possible is proposed. Finally, numerical analysis shows that our proposed non-stationary channel model is effective in capturing the characteristics of a massive MIMO channel.

Key words

Massive MIMO Spherical wave-front assumption Non-stationary property Birth-death process Visibility region method 

CLC number

TN929.5 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babich, F., Lombardi, G., 2000. A Markov model for the mobile propagation channel. IEEE Trans. Veh. Technol., 49(1):63–73. https://doi.org/10.1109/25.820699CrossRefGoogle Scholar
  2. Bohagen, F., Orten, P., Oien, G.E., 2006. Modeling of lineof-sight 2×2 MIMO channels: spherical versus plane waves. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, p.1–5. https://doi.org/10.1109/PIMRC.2006.254307Google Scholar
  3. Chong, C.C., Tan, C.M., Laurenson, D.I., et al., 2005. A novel wideband dynamic directional indoor channel model based on a Markov process. IEEE Trans. Wirel. Commun., 4(4):1539–1552. https://doi.org/10.1109/TWC.2005.850341CrossRefGoogle Scholar
  4. ETSI, 2014. Spatial Channel Model for Multiple Input Multiple Output (MIMO). Technical Report, 3GPP TR 25.996 Release 12. http://www.3gpp.orgGoogle Scholar
  5. Gao, X., Tufvesson, F., Edfors, O., et al., 2012. Measured propagation characteristics for very-large MIMO at 2.6 GHz. 46th Asilomar Conf. on Signals, Systems and Computers, p.295–299. https://doi.org/10.1109/ACSSC.2012.6489010Google Scholar
  6. Gao, X., Tufvesson, F., Edfors, O., 2013. Massive MIMO channels—measurements and models. Asilomar Conf. on Signals, Systems and Computers, p.280–284. https://doi.org/10.1109/ACSSC.2013.6810277Google Scholar
  7. ITU-R, 2008. Guidelines for Evaluation of Radio Interface Technologies for IMT-Advanced. Technical Report, No. M.2135.Google Scholar
  8. Kyösti, P., Meinilä, J., Hentilä, L., et al., 2007. Winner II Channel Models Part II Radio Channel Measurement and Analysis Results. Technical Report, No. T-4-027756.Google Scholar
  9. Larsson, E.G., Edfors, O., Tufvesson, F., et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun. Mag., 52(2):186–195. https://doi.org/10.1109/MCOM.2014.6736761CrossRefGoogle Scholar
  10. Li, X.R., Zhou, S.D., Bjornson, E., et al., 2015. Capacity analysis for spatially non-wide sense stationary uplink massive MIMO systems. IEEE Trans. Wirel. Commun., 14(12):7044–7056. https://doi.org/10.1109/TWC.2015.2464219CrossRefGoogle Scholar
  11. Liu, L.F., Oestges, C., Poutanen, J., et al., 2012. The cost 2 100 MIMO channel model. IEEE Wirel. Commun., 19(6):92–99. https://doi.org/10.1109/MWC.2012.6393523CrossRefGoogle Scholar
  12. Lu, L., Li, G.Y., Swindlehurst, A.L., et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process., 8(5):742–758. https://doi.org/10.1109/JSTSP.2014.2317671CrossRefGoogle Scholar
  13. Paetzold, M., 2011. Mobile Radio Channels (2nd Ed). John Wiley and Sons, West Sussex, UK.CrossRefGoogle Scholar
  14. Payami, S., Tufvesson, F., 2012. Channel measurements and analysis for very large array systems at 2.6 GHz. 6th European Conf. on Antennas and Propagation, p.433–437. https://doi.org/10.1109/EuCAP.2012.6206345Google Scholar
  15. Rusek, F., Persson, D., Lau, B.K., et al., 2013. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag., 30(1):40–60. https://doi.org/10.1109/MSP.2011.2178495CrossRefGoogle Scholar
  16. Schumacher, L., Pedersen, K.I., Mogensen, P.E., 2002. From antenna spacings to theoretical capacities—guidelines for simulating MIMO systems. 13th IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, p.587–592. https://doi.org/10.1109/PIMRC.2002.1047289CrossRefGoogle Scholar
  17. Wang, C.X., Haider, F., Gao, X.Q., et al., 2014. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag., 52(2):122–130. https://doi.org/10.1109/MCOM.2014.6736752CrossRefGoogle Scholar
  18. Wu, H.L., Jin, S., Gao, X.Q., 2015. Non-stationary multiring channel model for massive MIMO systems. Int. Conf. onWireless Communications & Signal Processing, p.1–6. https://doi.org/10.1109/WCSP.2015.7341264Google Scholar
  19. Wu, S.B., Wang, C.X., Aggoune, E.H.M., et al., 2014. A non-stationary 3D wideband twin-cluster model for 5G massive MIMO channels. IEEE J. Sel. Areas Commun., 32(6):1207–1218. https://doi.org/10.1109/JSAC.2014.2328131CrossRefGoogle Scholar
  20. Wu, S.B., Wang, C.X., Haas, H., et al., 2015. A nonstationary wideband channel model for massive MIMO communication systems. IEEE Trans. Wirel. Commun., 14(3):1434–1446. https://doi.org/10.1109/TWC.2014.2366153CrossRefGoogle Scholar
  21. Xie, Y., Li, B., Zuo, X.Y., et al., 2015. A 3D geometrybased stochastic model for 5G massive MIMO channels. Int. Conf. on Heterogeneous Networking for Quality, Reliability, Security and Robustness, p.216–222. https://doi.org/10.4108/eai.19-8-2015.2259755Google Scholar
  22. Yaghjian, A.D., 1986. An overview of near-field antenna measurements. IEEE Trans. Antennas Propag., 34(1):30–45. https://doi.org/10.1109/TAP.1986.1143727CrossRefGoogle Scholar
  23. Zheng, K., Ou, S.L., Yin, X.F., 2014. Massive MIMO channel models: a survey. Int. J. Antennas Propag., 2014(11):1–10. https://doi.org/10.1155/2014/848071Google Scholar
  24. Zwick, T., Fischer, C., Didascalou, D., et al., 2000. A stochastic spatial channel model based on wavepropagation modeling. IEEE J. Sel. Areas Commun., 18(1):6–15. https://doi.org/10.1109/49.821698CrossRefGoogle Scholar
  25. Zwick, T., Fischer, C., Wiesbeck, W., 2002. A stochastic multipath channel model including path directions for indoor environments. IEEE J. Sel. Areas Commun., 20(6):1178–1192. https://doi.org/10.1109/JSAC.2002.801218CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Information and Communication EngineeringBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations