Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research

  • Ehab Ali
  • Mahamod Ismail
  • Rosdiadee Nordin
  • Nor Fadzilah Abdulah
Review

Abstract

Massive multiple-input multiple-output (MIMO) systems combined with beamforming antenna array technologies are expected to play a key role in next-generation wireless communication systems (5G), which will be deployed in 2020 and beyond. The main objective of this review paper is to discuss the state-of-the-art research on the most favourable types of beamforming techniques that can be deployed in massive MIMO systems and to clarify the importance of beamforming techniques in massive MIMO systems for eliminating and resolving the many technical hitches that massive MIMO system implementation faces. Classifications of optimal beamforming techniques that are used in wireless communication systems are reviewed in detail to determine which techniques are more suitable for deployment in massive MIMO systems to improve system throughput and reduce intra- and inter-cell interference. To overcome the limitations in the literature, we have suggested an optimal beamforming technique that can provide the highest performance in massive MIMO systems, satisfying the requirements of next-generation wireless communication systems.

Key words

Beamforming classifications Massive MIMO Hybrid beamforming Millimetre-wave beamforming 

CLC number

TN92 

References

  1. Ahmadi, H., Farhang, A., Marchetti, N., et al., 2016. A game theoretic approach for pilot contamination avoidance in massive MIMO. IEEE Wirel. Commun. Lett., 5(1): 12–15. https://doi.org/10.1109/LWC.2015.2487261CrossRefGoogle Scholar
  2. Andrews, J.G., Buzzi, S., Choi, W., et al., 2014. What will 5G be? IEEE J. Sel. Areas Commun., 32(6): 1065–1082. https://doi.org/10.1109/JSAC.2014.2328098CrossRefGoogle Scholar
  3. Arablouei, R., Dogancay, K., 2012. Linearly-constrained recursive total least-squares algorithm. IEEE Signal Process. Lett., 19(12): 821–824. https://doi.org/10.1109/LSP.2012.2221705CrossRefGoogle Scholar
  4. Arunitha, A., Gunasekaran, T., Kumar, N.S., et al., 2015. Adaptive beam forming algorithms for MIMO antenna. Int. J. Innov. Technol. Explor. Eng., 14(8): 9–12.Google Scholar
  5. Ashikhmin, A., Marzetta, T., 2012. Pilot contamination precoding in multi-cell large scale antenna systems. IEEE Int. Symp. on Information Theory Proc., p.1137–1141. http://dx.doi.org/10.1109/ISIT.2012.6283031Google Scholar
  6. Bae, J.S., Choi, Y.S., Kim, J.S., et al., 2014. Architecture and performance evaluation of mmwave based 5G mobile communication system. Int. Conf. on Information and Communication Technology Convergence, p.847–851. http://dx.doi.org/10.1109/ICTC.2014.6983310Google Scholar
  7. Barua, S., Lam, S.C., Ghosa, P., et al., 2015. A survey of direction of arrival estimation techniques and implementation of channel estimation based on SCME. 12th Int. Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, p.1–5. http://dx.doi.org/10.1109/ECTICon.2015.7206986Google Scholar
  8. Behjati, M., Ismail, M., Nordin, R., 2015. Limited feedback MU-MIMO in LTE-A system: concepts, performance, and future works. Wirel. Pers. Commun., 84(2): 935–957. http://dx.doi.org/10.1007/s11277-015-2669-7CrossRefGoogle Scholar
  9. Bhotto, M.Z.A., Bajić, I.V., 2015. Constant modulus blind adaptive beamforming based on unscented Kalman filtering. IEEE Signal Process. Lett., 22(4): 474–478. http://dx.doi.org/10.1109/LSP.2014.2362932CrossRefGoogle Scholar
  10. Björnson, E., Sanguinetti, L., Hoydis, J., et al., 2014. Designing multi-user MIMO for energy efficiency: when is massive MIMO the answer? IEEE Wireless Communications and Networking Conf., p.242–247. http://dx.doi.org/10.1109/WCNC.2014.6951974Google Scholar
  11. Bogale, T.E., Le, L.B., 2014. Beamforming for multiuser massive MIMO systems: digital versus hybrid analogdigital. IEEE Global Communications Conf., p.4066–4071. http://dx.doi.org/10.1109/GLOCOM.2014.7037444Google Scholar
  12. Bogale, T.E., Le, L.B., 2015. Massive MIMO and millimeter wave for 5G wireless HetNet: potentials and challenges. arXiv:1510.06359.Google Scholar
  13. Bogale, T.E., Le, L.B., Haghighat, A., 2015. User scheduling for massive MIMO OFDMA systems with hybrid analogdigital beamforming. IEEE Int. Conf. on Communications, p.1757–1762. http://dx.doi.org/10.1109/ICC.2015.7248579Google Scholar
  14. Bogale, T.E., Le, L.B., Haghighat, A., et al., 2016. On the number of RF chains and phase shifters, and scheduling design with hybrid analog–digital beamforming. IEEE Trans. Wirel. Commun., 15(5): 3311–3326. http://dx.doi.org/10.1109/TWC.2016.2519883CrossRefGoogle Scholar
  15. Butler, J., Ralph, L., 1961. Beam-forming matrix simplifies design of electronically scanned antennas. Electron. Des., 9: 170–173.Google Scholar
  16. Carlson, B.D., 1988. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst., 24(4): 397–401. http://dx.doi.org/10.1109/7.7181CrossRefGoogle Scholar
  17. Carton, I., Fan, W., Pedersen, G.F., 2015. A frequency invariant beamformer for channel parameter estimation in millimeter wave bands. Int. Symp. on Antennas and Propagation, p.1–4.Google Scholar
  18. Chen, C.E., 2015. An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems. IEEE Wirel. Commun. Lett., 4(3): 285–288. http://dx.doi.org/10.1109/LWC.2015.2409268CrossRefGoogle Scholar
  19. Chen, X.M., Zhang, Z.Y., Chen, H.H., et al., 2015. Enhancing wireless information and power transfer by exploiting multi-antenna techniques. IEEE Commun. Mag., 53(4): 133–141. http://dx.doi.org/10.1109/MCOM.2015.7081086CrossRefGoogle Scholar
  20. Chuang, S.F., Wu, W.R., Liu, Y.T., 2015. High-resolution AoA estimation for hybrid antenna arrays. IEEE Trans. Antennas Propag., 63(7): 2955–2968. http://dx.doi.org/10.1109/TAP.2015.2426795MathSciNetCrossRefGoogle Scholar
  21. Cudak, M., Ghosh, A., Kovarik, T., et al., 2013. Moving towards mmwave-based beyond-4G (B-4G) technology. IEEE 77th Vehicular Technology Conf., p.1–5. http://dx.doi.org/10.1109/VTCSpring.2013.6692638Google Scholar
  22. Dai, L.L., Gao, X.Y., Quan, J.G., et al., 2015a. Near-optimal hybrid analog and digital precoding for downlink mmwave massive MIMO systems. IEEE Int. Conf. on Communications, p.1334–1339. http://dx.doi.org/10.1109/ICC.2015.7248508Google Scholar
  23. Dai, L.L., Gao, X.Y., Wang, Z.C., 2015b. Energy-efficient hybrid precoding based on successive interference cancelation for millimeter-wave massive MIMO systems. IEEE Radio and Antenna Days of the Indian Ocean, p.1–2. http://dx.doi.org/10.1109/RADIO.2015.7323368Google Scholar
  24. Dai, M.B., Clerckx, B., 2016. Hybrid precoding for physical layer multicasting. IEEE Commun. Lett., 20(2): 228–231. http://dx.doi.org/10.1109/LCOMM.2015.2503273CrossRefGoogle Scholar
  25. Darzi, S., Kiong, T.S., Islam, M.T., et al., 2014. Null steering of adaptive beamforming using linear constraint minimum variance assisted by particle swarm optimization, dynamic mutated artificial immune system, and gravitational search algorithm. Sci. World J., Article ID 724639. http://dx.doi.org/10.1155/2014/724639Google Scholar
  26. Darzi, S., Kiong, T.S., Islam, M.T., et al., 2016. A memorybased gravitational search algorithm for enhancing minimum variance distortionless response beamforming. Appl. Soft Comput., 47: 103–118. http://dx.doi.org/10.1016/j.asoc.2016.05.045CrossRefGoogle Scholar
  27. de Carvalho, E., Björnson, E., Larsson, E.G., et al., 2016. Random access for massive MIMO systems with intracell pilot contamination. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.3361–3365. http://dx.doi.org/10.1109/ICASSP.2016.7472300Google Scholar
  28. Frost, O.L., 1972. An algorithm for linearly constrained adaptive array processing. Proc. IEEE, 60(8): 926–935. http://dx.doi.org/10.1109/PROC.1972.8817CrossRefGoogle Scholar
  29. Garcia, N., Wymeersch, H., Larsson, E.G., et al., 2017. Direct localization for massive MIMO. IEEE Trans. Signal Process., 65(10): 2475–2487. http://dx.doi.org/10.1109/TSP.2017.2666779CrossRefGoogle Scholar
  30. Ghauch, H., Kim, T., Bengtsson, M., et al., 2016. Subspace estimation and decomposition for large millimeter-wave MIMO systems. IEEE J. Sel. Topics Signal Process., 10(3): 528–542. http://dx.doi.org/10.1109/JSTSP.2016.2538178CrossRefGoogle Scholar
  31. Gotsis, K.A., Sahalos, J.N., 2011. Beamforming in 3G and 4G mobile communications: the switched-beam approach. In: Maícas, J.P. (Ed.), A Multidisciplinary Approach. InTech, p.201–216.Google Scholar
  32. Gozalves, J., 2016. Fifth-generation technologies trials [Mobile Radio]. IEEE Veh. Technol. Mag., 11(2): 5–13. http://dx.doi.org/10.1109/MVT.2016.2544239CrossRefGoogle Scholar
  33. Gross, F., 2005. Smart Antennas for Wireless Communications. McGraw-Hill Professional.Google Scholar
  34. Guerra, A., Guidi, F., Dardari, D., 2015. Position and orientation error bound for wideband massive antenna arrays. IEEE Int. Conf. on Communication Workshop, p.853–858. http://dx.doi.org/10.1109/ICCW.2015.7247282Google Scholar
  35. Guney, K., Onay, M., 2007. Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm. Progr. Electromagn. Res., 70: 21–36. http://dx.doi.org/10.2528/PIER07011204CrossRefGoogle Scholar
  36. Guo, K.F., Guo, Y., Ascheid, G., 2015. Distributed antennas aided secure communication in MU-massive-MIMO with QoS guarantee. IEEE 82nd Vehicular Technology Conf., p.1–7. http://dx.doi.org/10.1109/VTCFall.2015.7390892Google Scholar
  37. Haghighat, A., 2014. Hybrid analog-digital beamforming: how many RF chains and phase shifters do we need? arXiv:1410.2609.Google Scholar
  38. He, Q., Xiao, L.M., Zhong, X.F., et al., 2014. Performance of massive MIMO with zero-forcing beamforming and reduced downlink pilots. Int. Symp. on Wireless Personal Multimedia Communications, p.690–695. http://dx.doi.org/10.1109/WPMC.2014.7014904Google Scholar
  39. He, S.W., Huang, Y.M., Yang, L.X., et al., 2015. Energy efficient coordinated beamforming for multicell system: duality-based algorithm design and massive MIMO transition. IEEE Trans. Commun., 63(12): 4920–4935. http://dx.doi.org/10.1109/TCOMM.2015.2496948CrossRefGoogle Scholar
  40. Heath, R.W., Gonzalez-Prelcic, N., Rangan, S., et al., 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Topics Signal Process., 10(3): 436–453. http://dx.doi.org/10.1109/JSTSP.2016.2523924CrossRefGoogle Scholar
  41. Hu, A.Z., 2016. DOA-based beamforming for multi-cell massive MIMO systems. J. Commun. Networks, 18(5): 735–743. http://dx.doi.org/10.1109/JCN.2016.000103Google Scholar
  42. Hu, A.Z., Lv, T.J., Gao, H., et al., 2013. Pilot design for large-scale multi-cell multiuser MIMO systems. IEEE Int. Conf. on Communications, p.5381–5385. http://dx.doi.org/10.1109/ICC.2013.6655444Google Scholar
  43. Huang, L., Zhang, B., Ye, Z.F., 2015. Robust adaptive beamforming using a new projection approach. IEEE Int. Conf. on Digital Signal Processing, p.1181–1185. http://dx.doi.org/10.1109/ICDSP.2015.7252066Google Scholar
  44. Huang, Z.E., Pan, J.Y., 2015. Coordinative switch beamforming scheduler for guaranteed service with service area subsectorization in next generation cellular network. IEEE Wireless Communications and Networking Conf., p.1000–1005. http://dx.doi.org/10.1109/WCNC.2015.7127606Google Scholar
  45. Huh, H., Caire, G., Papadopoulos, H.C., et al., 2012. Achieving “massive MIMO” spectral efficiency with a not-solarge number of antennas. IEEE Trans. Wirel. Commun., 11(9): 3226–3239. http://dx.doi.org/10.1109/TWC.2012.070912.111383CrossRefGoogle Scholar
  46. Hur, S., Kim, T., Love, D.J., et al., 2013. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans. Commun., 61(10): 4391–4403. http://dx.doi.org/10.1109/TCOMM.2013.090513.120848CrossRefGoogle Scholar
  47. Ismail, M., Doumi, T.L., Gardiner, J.G., 1999. Performance enhancement of cellular topologies employing dynamic cell sectoring and base station antenna beam steering using time division multiple access. J. Kejurut., 11(1).Google Scholar
  48. Jamel, T.M., 2015. Performance enhancement of adaptive beamforming algorithms based on a combination method. 12th Int. Multi-conf. on Systems, Signals and Devices, p.1–6. http://dx.doi.org/10.1109/SSD.2015.7348125Google Scholar
  49. Jin, S., Wang, X.Y., Li, Z., et al., 2014. Zero-forcing beamforming in massive MIMO systems with time-shifted pilots. IEEE Int. Conf. on Communications, p.4801–4806. http://dx.doi.org/10.1109/ICC.2014.6884080Google Scholar
  50. Jin, S., Wang, X.Y., Li, Z., et al., 2016. On massive MIMO zero-forcing transceiver using time-shifted pilots. IEEE Trans. Veh. Technol., 65(1): 59–74. http://dx.doi.org/10.1109/TVT.2015.2391192MathSciNetCrossRefGoogle Scholar
  51. Ju, M.Y., Qian, J., Li, Y.H., et al., 2013. Comparison of multiuser MIMO systems with MF, ZF and MMSE receivers. IEEE Int. Conf. on Information Science and Technology, p.1260–1263. http://dx.doi.org/10.1109/ICIST.2013.6747766Google Scholar
  52. Kammoun, A., Müller, A., Björnson, E., et al., 2014. Linear precoding based on polynomial expansion: large-scale multi-cell MIMO systems. IEEE J. Sel. Topics Signal Process., 8(5): 861–875. http://dx.doi.org/10.1109/JSTSP.2014.2322582CrossRefGoogle Scholar
  53. Khan, M.R.R., Tuzlukov, V., 2011. Null steering beamforming for wireless communication system using genetic algorithm. IEEE Int. Conf. on Microwave Technology and Computational Electromagnetics, p.289–292. http://dx.doi.org/10.1109/ICMTCE.2011.5915514Google Scholar
  54. Kiani, S., Pezeshk, A.M., 2015. A comparative study of several array geometries for 2D DOA estimation. Proc. Comput. Sci., 58: 18–25. http://dx.doi.org/10.1016/j.procs.2015.08.004CrossRefGoogle Scholar
  55. Kim, C., Kim, T., Seol, J.Y., 2013. Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems. IEEE Globecom Workshops, p.61–65. http://dx.doi.org/10.1109/GLOCOMW.2013.6824962Google Scholar
  56. Kutty, S., Sen, D., 2016. Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun. Surv. Tutor., 18(2): 949–973. http://dx.doi.org/10.1109/COMST.2015.2504600CrossRefGoogle Scholar
  57. Larsson, E.G., Edfors, O., Tufvesson, F., et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun. Mag., 52(2): 186–195. http://dx.doi.org/10.1109/MCOM.2014.6736761CrossRefGoogle Scholar
  58. Le, T.V.T., Kim, Y.H., 2015. Power and spectral efficiency of multi-pair massive antenna relaying systems with zeroforcing relay beamforming. IEEE Commun. Lett., 19(2): 243–246. http://dx.doi.org/10.1109/LCOMM.2014.2382575CrossRefGoogle Scholar
  59. Lee, G., Sung, Y., Kountouris, M., 2015. On the performance of randomly directional beamforming between line-ofsight and rich scattering channels. IEEE 16th Int. Workshop on Signal Processing Advances in Wireless Communications, p.141–145. http://dx.doi.org/10.1109/SPAWC.2015.7227016Google Scholar
  60. Li, H.M., Leung, V.C.M., 2013. Low complexity zero-forcing beamforming for distributed massive MIMO systems in large public venues. J. Commun. Networks, 15(4): 370–382. http://dx.doi.org/10.1109/JCN.2013.000068CrossRefGoogle Scholar
  61. Li, M., Collings, I.B., Hanly, S.V., et al., 2016. Multicell coordinated scheduling with multiuser zero-forcing beamforming. IEEE Trans. Wirel. Commun., 15(2): 827–842. http://dx.doi.org/10.1109/TWC.2015.2479226CrossRefGoogle Scholar
  62. Li, N.X., Wei, Z.X., Geng, J., et al., 2014. Multiuser hybrid beamforming for max-min SINR problem under 60 GHz wireless channel. IEEE 25th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communication, p.123–128. http://dx.doi.org/10.1109/PIMRC.2014.7136145Google Scholar
  63. Liang, L., Xu, W., Dong, X.D., 2014. Low-complexity hybrid precoding in massive multiuser MIMO systems. IEEE Wirel. Commun. Lett., 3(6): 653–656. http://dx.doi.org/10.1109/LWC.2014.2363831CrossRefGoogle Scholar
  64. Liao, B., Chan, S.C., 2011. DOA estimation of coherent signals for uniform linear arrays with mutual coupling. IEEE Int. Symp. on Circuits and Systems, p.377–380. http://dx.doi.org/10.1109/ISCAS.2011.5937581Google Scholar
  65. Liao, W.C., Chang, T.H., Ma, W.K., et al., 2011. QoS-based transmit beamforming in the presence of eavesdroppers: an optimized artificial-noise-aided approach. IEEE Trans. Signal Process., 59(3): 1202–1216. http://dx.doi.org/10.1109/TSP.2010.2094610MathSciNetCrossRefGoogle Scholar
  66. Liu, D.L., Ma, W.Z., Shao, S.H., et al., 2016. Performance analysis of TDD reciprocity calibration for massive MU-MIMO systems with ZF beamforming. IEEE Commun. Lett., 20(1): 113–116. http://dx.doi.org/10.1109/LCOMM.2015.2499283CrossRefGoogle Scholar
  67. Liu, G.Y., Hou, X.Y., Wang, F., et al., 2016. Achieving 3D-MIMO with massive antennas from theory to practice with evaluation and field trial results. IEEE Syst. J., 11(1): 62–71. http://dx.doi.org/10.1109/JSYST.2015.2477503CrossRefGoogle Scholar
  68. Liu, J., Liu, W.J., Liu, H.W., et al., 2016. Average SINR calculation of a persymmetric sample matrix inversion beamformer. IEEE Trans. Signal Process., 64(8): 2135–2145. http://dx.doi.org/10.1109/TSP.2015.2512527MathSciNetCrossRefGoogle Scholar
  69. Liu, W., Weiss, S., 2010. Wideband Beamforming: Concepts and Techniques. John Wiley & Sons, UK. http://dx.doi.org/10.1002/9780470661178CrossRefGoogle Scholar
  70. Lu, L., Li, G.Y., Swindlehurst, A.L., et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Topics Signal Process., 8(5): 742–758. http://dx.doi.org/10.1109/JSTSP.2014.2317671CrossRefGoogle Scholar
  71. Masouros, C., Sellathurai, M., Ratnarajah, T., 2013. A low-complexity sequential encoder for threshold vector perturbation. IEEE Commun. Lett., 17(12): 2225–2228. http://dx.doi.org/10.1109/LCOMM.2013.101813.131811CrossRefGoogle Scholar
  72. Mazrouei-Sebdani, M., Krzymień, W.A., Melzer, J., 2016. Massive MIMO with nonlinear precoding: large-system analysis. IEEE Trans. Veh. Technol., 65(4): 2815–2820. http://dx.doi.org/10.1109/TVT.2015.2425884CrossRefGoogle Scholar
  73. Medbo, J., Börner, K., Haneda, K., et al., 2014. Channel modelling for the fifth generation mobile communications. 8th European Conf. on Antennas and Propagation, p.219–223. http://dx.doi.org/10.1109/EuCAP.2014.6901730Google Scholar
  74. Murray, B.P., Zaghloul, A.I., 2014. A survey of cognitive beamforming techniques. United States National Committee of URSI National Radio Science Meeting, p.1. http://dx.doi.org/10.1109/USNC-URSI-NRSM.2014.692 7993Google Scholar
  75. Ngo, H.Q., Larsson, E.G., 2013. Spectral efficiency of the multipair two-way relay channel with massive arrays. Asilomar Conf. on Signals, Systems and Computers, p.275–279. http://dx.doi.org/10.1109/ACSSC.2013.6810276Google Scholar
  76. Ngo, H.Q., Marzetta, T.L., Larsson, E.G., 2011. Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.3464–3467. http://dx.doi.org/10.1109/ICASSP.2011.5947131Google Scholar
  77. Noh, S., Zoltowski, M.D., Love, D.J., 2016. Training sequence design for feedback assisted hybrid beamforming in massive MIMO systems. IEEE Trans. Commun., 64(1): 187–200. http://dx.doi.org/10.1109/TCOMM.2015.2498184CrossRefGoogle Scholar
  78. Oumar, O.A., Siyau, M.F., Sattar, T.P., 2012. Comparison between MUSIC and ESPRIT direction of arrival estimation algorithms for wireless communication systems. Int. Conf. on Future Generation Communication Technology, p.99–103. http://dx.doi.org/10.1109/FGCT.2012.6476563CrossRefGoogle Scholar
  79. Pradhan, B.B., Roy, L.P., 2014. MIMO beamforming in spatially and temporally correlated channel. Annual IEEE India Conf., p.1–5. http://dx.doi.org/10.1109/INDICON.2014.7030636Google Scholar
  80. Rappaport, T.S., Sun, S., Mayzus, R., et al., 2013. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access, 1: 335–349. http://dx.doi.org/10.1109/ACCESS.2013.2260813CrossRefGoogle Scholar
  81. Rasekh, M., Seydnejad, S.R., 2014. Design of an adaptive wideband beamforming algorithm for conformal arrays. IEEE Commun. Lett., 18(11): 1955–1958. http://dx.doi.org/10.1109/LCOMM.2014.2357417CrossRefGoogle Scholar
  82. Ren, H., Arigong, B., Zhou, M., et al., 2016. A novel design of 4 × 4 Butler matrix with relatively flexible phase differences. IEEE Antennas Wirel. Propag. Lett., 15: 1277–1280. https://doi.org/10.1109/LAWP.2015.2504719CrossRefGoogle Scholar
  83. Roh, W., Seol, J.Y., Park, J., et al., 2014. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag., 52(2): 106–113. http://dx.doi.org/10.1109/MCOM.2014.6736750CrossRefGoogle Scholar
  84. Rusek, F., Persson, D., Lau, B.K., et al., 2013. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag., 30(1): 40–60. http://dx.doi.org/10.1109/MSP.2011.2178495CrossRefGoogle Scholar
  85. Shang, G.W., Li, H., 2015. Spatial domain method based on 2D-DoA estimation against pilot contamination for multicell massive MIMO systems. Int. Conf. on Wireless Communications and Signal Processing, p.1–5. http://dx.doi.org/10.1109/WCSP.2015.7341177Google Scholar
  86. Sivasundarapandian, S., 2015. Performance analysis of multiband multiple beamforming Butler matrix for smart antenna systems. Int. Conf. on Robotics, Automation, Control and Embedded Systems, p.1–5. http://dx.doi.org/10.1109/RACE.2015.7097291Google Scholar
  87. Sohrabi, F., Yu, W., 2016. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J. Sel. Topics Signal Process., 10(3): 501–513. http://dx.doi.org/10.1109/JSTSP.2016.2520912CrossRefGoogle Scholar
  88. Sun, S., Rappaport, T.S., Heath, R.W., et al., 2014. MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Commun. Mag., 52(12): 110–121. http://dx.doi.org/10.1109/MCOM.2014.6979962CrossRefGoogle Scholar
  89. Swindlehurst, A.L., Ayanoglu, E., Heydari, P., et al., 2014. Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun. Mag., 52(9): 56–62. http://dx.doi.org/10.1109/MCOM.2014.6894453CrossRefGoogle Scholar
  90. Tiwari, N., Rao, T.R., 2015. A switched beam antenna array with Butler matrix network using substrate integrated waveguide technology for 60 GHz communications. Int. Conf. on Advances in Computing, Communications and Informatics, p.2152–2157. http://dx.doi.org/10.1109/ICACCI.2015.7275935Google Scholar
  91. Venkateswaran, V., van der Veen, A.J., 2010. Analog beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Trans. Signal Process., 58(8): 4131–4143. http://dx.doi.org/10.1109/TSP.2010.2048321MathSciNetCrossRefGoogle Scholar
  92. Vincent, F., Besson, O., 2004. Steering vector errors and diagonal loading. IEEE Proc.-Radar Sonar Navig., 151(6): 337–343. http://dx.doi.org/10.1049/ip-rsn:20041069CrossRefGoogle Scholar
  93. Vorobyov, S.A., Gershman, A.B., Luo, Z.Q., 2002. Robust adaptive beamforming using worst-case performance optimization via second-order cone programming. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.2901–2904. http://dx.doi.org/10.1109/ICASSP.2002.5745255Google Scholar
  94. Vouyioukas, D., 2013. A survey on beamforming techniques for wireless MIMO relay networks. Int. J. Antennas Propag., 2013: 1–21. http://dx.doi.org/10.1155/2013/745018CrossRefGoogle Scholar
  95. Wagner, S., Couillet, R., Debbah, M., et al., 2012. Large system analysis of linear precoding in correlated MISO broadcast channels under limited feedback. IEEE Trans. Inform. Theory, 58(7): 4509–4537. http://dx.doi.org/10.1109/TIT.2012.2191700MathSciNetCrossRefGoogle Scholar
  96. Wang, H.L., Pan, Z.G., Ni, J.Q., et al., 2013. A spatial domain based method against pilot contamination for multi-cell massive MIMO systems. Int. ICST Conf. on Communications and Networking in China, p.218–222. http://dx.doi.org/10.1109/ChinaCom.2013.6694594Google Scholar
  97. Wu, X.M., Cai, Y.L., de Lamare, R.C., et al., 2015. Adaptive blind widely linear CCM reduced-rank beamforming for large-scale antenna arrays. IEEE Int. Conf. on Digital Signal Processing, p.5–9. http://dx.doi.org/10.1109/ICDSP.2015.7251320Google Scholar
  98. WWRF, 2014. 5G Vision and Requirements. IMT-2020(5G) Promotion Group, China.Google Scholar
  99. Yan, L., Fang, X.M., Zhong, S., 2014. Quasi-full-duplex wireless communication scheme for high-speed railway. IEEE 80th Vehicular Technology Conf., p.1–6. http://dx.doi.org/10.1109/VTCFall.2014.6966146Google Scholar
  100. Yang, H., Marzetta, T.L., 2013a. Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE J. Sel. Areas Commun., 31(2): 172–179. http://dx.doi.org/10.1109/JSAC.2013.130206CrossRefGoogle Scholar
  101. Yang, H., Marzetta, T.L., 2013b. Total energy efficiency of cellular large scale antenna system multiple access mobile networks. IEEE Online Conf. on Green Communications, p.27–32. http://dx.doi.org/10.1109/OnlineGreenCom.2013.6731024Google Scholar
  102. Yang, H., Marzetta, T.L., 2015. Energy efficient design of massive MIMO: how many antennas? IEEE 81st Vehicular Technology Conf., p.1–5. http://dx.doi.org/10.1109/VTCSpring.2015.7145809Google Scholar
  103. Yang, P., Yang, F., Nie, Z.P., 2010. DOA estimation with sub-array divided technique and interpolated ESPRIT algorithm on a cylindrical conformal array antenna. Progr. Electromagn. Res., 103: 201–216. http://dx.doi.org/10.2528/PIER10011904CrossRefGoogle Scholar
  104. Yin, H.F., Gesbert, D., Filippou, M.C., et al., 2013. Decontaminating pilots in massive MIMO systems. IEEE Int. Conf. on Communications, p.3170–3175. http://dx.doi.org/10.1109/ICC.2013.6655031Google Scholar
  105. Yin, H.F., Cottatellucci, L., Gesbert, D., et al., 2016. Robust pilot decontamination based on joint angle and power domain discrimination. IEEE Trans. Signal Process., 64(11): 2990–3003. http://dx.doi.org/10.1109/TSP.2016.2535204MathSciNetCrossRefGoogle Scholar
  106. Ying, D.W., Vook, F.W., Thomas, T.A., et al., 2015. Hybrid structure in massive MIMO: achieving large sum rate with fewer RF chains. IEEE Int. Conf. on Communications, p.2344–2349. http://dx.doi.org/10.1109/ICC.2015.7248675Google Scholar
  107. Zhang, R.N., Wang, S.C., Lu, X.F., et al., 2016. Twodimensional DoA estimation for multipath propagation characterization using the array response of PNsequences. IEEE Trans. Wirel. Commun., 15(1): 341–356. http://dx.doi.org/10.1109/TWC.2015.2473156CrossRefGoogle Scholar
  108. Zou, L., He, Z.S., 2013. MVDR method for the whole conformal arrays. In: Du, Z. (Ed.), Intelligence Computation and Evolutionary Computation. Advances in Intelligent Systems and Computing, Vol. 180. Springer, Berlin, Heidelberg. http://dx.doi.org/10.1007/978-3-642-31656-2_126Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ehab Ali
    • 1
  • Mahamod Ismail
    • 1
  • Rosdiadee Nordin
    • 1
  • Nor Fadzilah Abdulah
    • 1
  1. 1.Department of Electrical, Electronic and System EngineeringUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia

Personalised recommendations