On-chip optical interconnect using visible light

  • Wei Cai
  • Bing-cheng Zhu
  • Xu-min Gao
  • Yong-chao Yang
  • Jia-lei Yuan
  • Gui-xia Zhu
  • Yong-jin Wang
  • Peter Grünberg


We propose and fabricate a monolithic optical interconnect on a GaN-on-silicon platform using a wafer-level technique. Because the InGaN/GaN multiple-quantum-well diodes (MQWDs) can achieve light emission and detection simultaneously, the emitter and collector sharing identical MQW structure are produced using the same process. Suspended waveguides interconnect the emitter with the collector to form in-plane light coupling. Monolithic optical interconnect chip integrates the emitter, waveguide, base, and collector into a multi-component system with a common base. Output states superposition and 1×2 in-plane light communication are experimentally demonstrated. The proposed monolithic optical interconnect opens a promising way toward the diverse applications from in-plane visible light communication to light-induced artificial synaptic devices, intelligent display, on-chip imaging, and optical sensing.

Key words

Homogeneous integration Multiple-quantum-well diode Visible light interconnection Coexistence of light emission and photodetection 

CLC number

TN491 E963 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bai, D., Wu, T., Li, X., et al., 2016. Suspended GaN-based nanostructure for integrated optics. Appl. Phys. B, 122(1):1–7. Scholar
  2. Brubaker, M.D., Blanchard, P.T., Schlager, J.B., et al., 2013. On-chip optical interconnects made with gallium nitride nanowires. Nano Lett., 13(2):374–377. Scholar
  3. Cai, W., Gao, X., Yuan, W., et al., 2016a. Integrated p-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities. Appl. Phys. Expr., 9(5):052204. Scholar
  4. Cai, W., Yang, Y., Gao, X., et al., 2016b. On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities. Opt. Expr., 24(6): 6004–6010. Scholar
  5. Cao, X., Yue, T., Lin, X., et al., 2016. Computational snapshot multispectral cameras: toward dynamic capture of the spectral world. IEEE Signal Process. Mag., 33(5): 95–108. Scholar
  6. Chen, R., Tran, T.T.D., Ng, K.W., et al., 2011. Nanolasers grown on silicon. Nat. Photon., 5(3):170–175. Scholar
  7. Dai, Q., 2017. Functional imaging of one million neurons at synaptic resolution simultaneously with a novel videorate, sub-gigapixel microscopy at centimeter scale fieldof-view, sub-micron resolution. CSH Asia Conf. on Primate Neuroscience: Perception, Cognition and Disease Models, in press.Google Scholar
  8. Feng, M., Holonyak, N.Jr, Hafez, W., 2004. Light-emitting transistor: light emission from InGaP/GaAs heterojunction bipolar transistors. Appl. Phys. Lett., 84(1): 151–153. Scholar
  9. Jhou, Y., Chen, C.H., Chuang, R.W.K., et al., 2005. Nitridebased light emitting diode and photodetector dual function devices with InGaN/GaN multiple quantum well structures. Solid-State Electron., 49(8):1347–1351. Scholar
  10. Jiang, Z., Atalla, M.R., You, G., et al., 2014. Monolithic integration of nitride light emitting diodes and photodetectors for bi-directional optical communication. Opt. Lett., 39(19):5657–5660. Scholar
  11. Krost, A., Dadgar, A., 2002. GaN-based optoelectronics on silicon substrates. Mat. Sci. Eng. B, 93(1):77–84. Scholar
  12. Kuykendall, T., Ulrich, P., Aloni, S., et al., 2007. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater., 6(12):951–956. Scholar
  13. Li, X., Shi, Z., Zhu, G., et al., 2014. High efficiency membrane light emitting diode fabricated by back wafer thinning technique. Appl. Phys. Lett., 105(3):2211–2213. Scholar
  14. Li, X., Zhu, G., Gao, X., et al., 2015. Suspended p-n junction InGaN/GaN multiple-quantum-well device with selectable functionality. IEEE Photon. J., 7(6):1–7. Scholar
  15. Liao, C.L., Ho, C.L., Chang, Y.F., et al., 2014. High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth. IEEE Electron Dev. Lett., 35(5):563–565. Scholar
  16. McKendry, J.J., Massoubre, D., Zhang, S., et al., 2012. Visible-light communications using a CMOS-controlled micro-light-emitting-diode array. J. Lightw. Technol., 30(1):61–67. Scholar
  17. Noda, S., Fujita, M., 2009. Light-emitting diodes: photonic crystal efficiency boost. Nat. Photon., 3(3):129–130. Scholar
  18. Qian, F., Li, Y., Gradečak, S., et al., 2008. Multiquantum- well nanowire heterostructures for wavelengthcontrolled lasers. Nat. Mater., 7(9):701–706. Scholar
  19. Sato, T., Takeda, K., Shinya, A., et al., 2015. Photonic crystal lasers for chip-to-chip and on-chip optical interconnects. IEEE J. Sel. Top. Quant. Electron., 21(6):728–737. Scholar
  20. Schubert, E.F., Gessmann, T., Kim, J.K., 2005. Light Emitting Diodes. John Wiley & Sons, Inc. 1209070811091908.a01.pub2Google Scholar
  21. Sekiya, T., Sasaki, T., Hane, K., 2015. Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate. J. Vac. Sci. Technol. B, 33(3):031207. Scholar
  22. Shokhovets, S., Himmerlich, M., Kirste, L., et al., 2015. Birefringence and refractive indices of wurtzite GaN in the transparency range. Appl. Phys. Lett., 107(9):092104. Scholar
  23. Sun, C., Wade, M.T., Lee, Y., et al., 2015. Single-chip microprocessor that communicates directly using light. Nature, 528(7583):534–538. Scholar
  24. Tchernycheva, M., Messanvi, A., de Luna Bugallo, A., et al., 2014. Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors. Nano Lett., 14(6):3515–3520. Scholar
  25. Triviño, N.V., Butte, R., Carlin, J.F., et al., 2015. Continuous wave blue lasing in III-nitride nanobeam cavity on silicon. Nano Lett., 15(2):1259–1263. Scholar
  26. van Zeghbroeck, B., Harder, C., Meier, H.P., et al., 1989. Photon transport transistor. Int. Technical Digest on Electron Devices Meeting, p.543–546. Scholar
  27. Vučić, J., Kottke, C., Nerreter, S., et al., 2010. 513 Mbit/s visible light communications link based on DMT-modulation of a white LED. J. Lightw. Technol., 28(24):3512–3518. Scholar
  28. Wang, Y., Zhu, G., Cai, W., et al., 2016. On-chip photonic system using suspended pn junction InGaN/GaN multiple quantum wells device and multiple waveguides. Appl. Phys. Lett., 108(16):162102. Scholar
  29. Wierer, J.J., David, A., Megens, M.M., 2009. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photon., 3(3):163–169. Scholar
  30. Yang, Y., Zhu, B., Shi, Z., et al., 2017. Multi-dimensional spatial light communication made with on-chip InGaN photonic integration. Opt. Matt., 66:659–663. Scholar
  31. Yuan, J., Cai, W., Gao, X., et al., 2016. Monolithic integration of a suspended light-emitting diode with a Y-branch structure. Appl. Phys. Expr., 9(3):032202. Scholar
  32. Zhang, Y., Oka, T., Suzuki, R., et al., 2014. Electrically switchable chiral light-emitting transistor. Science, 344(6185):725–728. Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Peter Grünberg Research CenterNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.School of Computer EngineeringNanjing Institute of TechnologyNanjingChina

Personalised recommendations