Computational methods in super-resolution microscopy

  • Zhi-ping Zeng
  • Hao Xie
  • Long Chen
  • Karl Zhanghao
  • Kun Zhao
  • Xu-san Yang
  • Peng Xi


The broad applicability of super-resolution microscopy has been widely demonstrated in various areas and disciplines. The optimization and improvement of algorithms used in super-resolution microscopy are of great importance for achieving optimal quality of super-resolution imaging. In this review, we comprehensively discuss the computational methods in different types of super-resolution microscopy, including deconvolution microscopy, polarization-based super-resolution microscopy, structured illumination microscopy, image scanning microscopy, super-resolution optical fluctuation imaging microscopy, single-molecule localization microscopy, Bayesian super-resolution microscopy, stimulated emission depletion microscopy, and translation microscopy. The development of novel computational methods would greatly benefit super-resolution microscopy and lead to better resolution, improved accuracy, and faster image processing.

Key words

Super-resolution microscopy Deconvolution Computational methods 

CLC number



  1. Agard, D.A., Hiraoka, Y., Sedat, J.W., 1989. Threedimensional microscopy: image processing for high resolution subcellular imaging. 33rd Annual Technical Symp., p.24–30. Scholar
  2. Axelrod, D., 1989. Fluorescence polarization microscopy. Methods Cell Biol., 30:333–352. Scholar
  3. Beck, A., Teboulle, M., 2009. A fast iterative shrinkagethresholding algorithm for linear inverse problems. SIAM J. Imag. Sci., 2(1):183–202. Scholar
  4. Betzig, E., Patterson, G.H., Sougrat, R., et al., 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793):1642–1645. Scholar
  5. Biggs, D.S., 2010. 3D deconvolution microscopy. Curr. Protoc. Cytom., 52:12.19.1-12.19.20. Scholar
  6. Broxton, M., Grosenick, L., Yang, S., et al., 2013. Wave optics theory and 3-D deconvolution for the light field microscope. Opt. Expr., 21(21):25418–25439. Scholar
  7. Chen, X., Wei, M., Zheng, M.M., et al., 2016. Study of RNA polymerase II clustering inside live-cell nuclei using Bayesian nanoscopy. ACS Nano, 10(2):2447–2454. Scholar
  8. Cox, S., Rosten, E., Monypenny, J., et al., 2012. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat. Methods, 9(2):195–200. Scholar
  9. DeMay, B.S., Noda, N., Gladfelter, A.S., et al., 2011. Rapid and quantitative imaging of excitation polarized gluorescence reveals ordered septin dynamics in live yeast. Biophys. J., 101(4):985–994.CrossRefGoogle Scholar
  10. Dertinger, T., Colyer, R., Iyer, G., et al., 2009. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). PNAS, 106(52):22287–22292. Scholar
  11. Dertinger, T., Pallaoro, A., Braun, G., et al., 2013. Advances in superresolution optical fluctuation imaging (SOFI). Q. Rev. Biophys., 46(2):210–221. Scholar
  12. Ding, Y., Xi, P., Ren, Q., 2011. Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy. Chin. Sci. Bull., 56(18):1857–1876. Scholar
  13. Dong, S., Liao, J., Guo, K., et al., 2015. Resolution doubling with a reduced number of image acquisitions. Biomed. Opt. Expr., 6(8):2946–2952. Scholar
  14. Falk, M.M., Lauf, U., 2001. High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells. Microsc. Res. Techn., 52(3):251–262.CrossRefGoogle Scholar
  15. Gao, J., Yang, X., Djekidel, M.N., et al., 2016. Developing bioimaging and quantitative methods to study 3D genome. Quant. Biol., 4(2):129–147. Scholar
  16. Geissbuehler, S., Bocchio, N.L., Dellagiacoma, C., et al., 2012. Mapping molecular statistics with balanced superresolution optical fluctuation imaging (bSOFI). Opt. Nanosc., 1(1):1–7. Scholar
  17. Gold, R., 1964. An Iterative Unfolding Method for Response Matrices. Argonne National Lab, Lemont, USA.CrossRefGoogle Scholar
  18. Gonzalez, R.C., Woods, R.E., 2008. Digital Image Processing. Pearson Education, New York, USA.Google Scholar
  19. Gu, M., Li, X., Cao, Y., 2014. Optical storage arrays: a perspective for future big data storage. Light Sci. Appl., 3(5):e177. Scholar
  20. Gustafsson, M.G., 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198(2):82–87. Scholar
  21. Gustafsson, M.G., Shao, L., Carlton, P.M., et al., 2008. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94(12):4957–4970. Scholar
  22. Hafi, N., Grunwald, M., van den Heuvel, L.S., et al., 2014. Fluorescence nanoscopy by polarization modulation and polarization angle narrowing. Nat. Methods, 11(5):579–584.CrossRefGoogle Scholar
  23. Hao, X., Kuang, C., Gu, Z., et al., 2013. From microscopy to nanoscopy via visible light. Light Sci. Appl., 2:e108. Scholar
  24. Hell, S.W., Wichmann, J., 1994. Breaking the diffraction resolution limit by stimulated emission: stimulatedemission-depletion fluorescence microscopy. Opt. Lett., 19(11):780–782. Scholar
  25. Hess, S.T., Girirajan, T.P., Mason, M.D., 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91(11):4258–4272. Scholar
  26. Hu, Y.S., Nan, X., Sengupta, P., et al., 2013a. Accelerating 3B single-molecule super-resolution microscopy with cloud computing. Nat. Methods, 10(2):96–97.CrossRefGoogle Scholar
  27. Hu, Y.S., Zhu, Q., Elkins, K., et al., 2013b. Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells. Opt. Nanosc., 2(1):7. Scholar
  28. Huang, B., Babcock, H., Zhuang, X., 2010. Breaking the diffraction barrier: super-resolution imaging of cells. Cell, 143(7):1047–1058. Scholar
  29. Ingaramo, M., York, A.G., Wawrzusin, P., et al., 2014. Twophoton excitation improves multifocal structured illumination microscopy in thick scattering tissue. PNAS, 111(14):5254–5259. Scholar
  30. Jansson, P.A., 2014. Deconvolution of Images and Spectra. Courier Corporation, North Chelmsford, USA.Google Scholar
  31. Klar, T.A., Jakobs, S., Dyba, M., et al., 2000. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. PNAS, 97(15):8206. Scholar
  32. Lal, A., Shan, C., Xi, P., 2016. Structured illumination microscopy image reconstruction algorithm. IEEE J. Sel. Topics Quant. Electron., 22(4):1–14. Scholar
  33. Lazar, J., Bondar, A., Timr, S., et al., 2011. Two-photon polarization microscopy reveals protein structure and function. Nat. Methods, 8(8):684–690.CrossRefGoogle Scholar
  34. Li, D., Shao, L., Chen, B.C., et al., 2015. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349(6251):aab3500. Scholar
  35. Liu, Y., Ding, Y., Alonas, E., et al., 2012. Achieving λ/10 resolution CW STED nanoscopy with a Ti: sapphire oscillator. PLOS ONE, 7(6):e40003. Scholar
  36. McNally, J.G., Karpova, T., Cooper, J., et al., 1999. Three dimensional imaging by deconvolution microscopy. Methods, 19(3):373–385. Scholar
  37. Mertz, J., 2011. Optical sectioning microscopy with planar or structured illumination. Nat. Methods, 8(10):811–819.CrossRefGoogle Scholar
  38. Müller, C.B., Enderlein, J., 2010. Image scanning microscopy. Phys. Rev. Lett., 104(19):198101. Scholar
  39. Orieux, F., Sepulveda, E., Loriette, V., et al., 2012. Bayesian estimation for optimized structured illumination microscopy. IEEE Trans. Image Process., 21(2):601–614. Scholar
  40. Pawley, J.B., 2010. Handbook of Biological Confocal Microscopy. Springer, New York.Google Scholar
  41. Qiu, Z., Wilson, R.S., Liu, Y., et al., 2016. Translation microscopy (TRAM) for super-resolution imaging. Sci. Rep., 6:19993. Scholar
  42. Rizzo, M.A., Piston, D.W., 2005. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. Biophys. J., 88(2):L14–L16. Scholar
  43. Rust, M.J., Bates, M., Zhuang, X., 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3(10):793–796.CrossRefGoogle Scholar
  44. Schoonderwoert, V., Dijkstra, R., Luckinavicius, G., et al., 2013. Huygens STED deconvolution increases signal-tonoise and image resolution towards 22 nm. Microsc. Today, 21(6):38–44. Scholar
  45. Schulz, O., Pieper, C., Clever, M., et al., 2013. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. PNAS, 110(52): 21000–21005. Scholar
  46. Sheppard, C.J., Mehta, S.B., Heintzmann, R., 2013. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett., 38(15):2889–2892. Scholar
  47. Sibarita, J.B., 2005. Deconvolution microscopy. In: Microscopy Techniques. Springer-Verlag, Berlin. Scholar
  48. Vrabioiu, A.M., Mitchison, T.J., 2006. Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature, 443(7110):466–469. Scholar
  49. Yang, Q., Cao, L., Zhang, H., et al., 2015. Method of lateral image reconstruction in structured illumination microscopy with super resolution. J. Innov. Opt. Health Sci., 9(3):1630002. Scholar
  50. Yang, X., Xie, H., Alonas, E., et al., 2016a. Mirror-enhanced super-resolution microscopy. Light Sci. Appl., 5(6): e16134. Scholar
  51. Yang, X., Zhanghao, K., Wang, H., et al., 2016b. Versatile application of fluorescent quantum dot labels in superresolution fluorescence microscopy. ACS Photon., 3(9): 1611–1618. Scholar
  52. Yassif, J., 2012. Quantitative Imaging in Cell Biology. Academic Press, Cambridge, USA.Google Scholar
  53. Yu, W., Ji, Z., Dong, D., et al., 2016. Super-resolution deep imaging with hollow Bessel beam STED microscopy. Laser Photon. Rev., 10(1):147–152. Scholar
  54. Zeng, Z., Chen, X., Wang, H., et al., 2015. Fast superresolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging. Sci. Rep., 5:8359. Scholar
  55. Zhang, X., Chen, X., Zeng, Z., et al., 2015. Development of a reversibly switchable fluorescent protein for superresolution optical fluctuation imaging (SOFI). ACS Nano, 9(3):2659–2667. Scholar
  56. Zhanghao, K., Chen, L., Wang, M.Y., et al., 2016. Superresolution dipole orientation mapping via polarization demodulation. Light Sci. Appl., 5(10):e16166. Scholar
  57. Zhou, X., Lei, M., Dan, D., et al., 2016. Image recombination transform algorithm for superresolution structured illumination microscopy. J. Biomed. Opt., 21(9):96009. Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Physics and Information EngineeringFuzhou UniversityFuzhouChina
  2. 2.Department of Biomedical EngineeringPeking UniversityBeijingChina
  3. 3.MOE Key Laboratory of BioinformaticsTsinghua UniversityBeijingChina
  4. 4.Bioinformatics Division and Center for Synthetic & Systems Biology, TNLISTTsinghua UniversityBeijingChina
  5. 5.Department of AutomationTsinghua UniversityBeijingChina

Personalised recommendations