Deceptive jamming discrimination based on range-angle localization of a frequency diverse array

  • Zhao-jian Zhang
  • Jun-wei Xie
  • Chuan Sheng
  • Zhun Tang
Article
  • 41 Downloads

Abstract

We propose a method to suppress deceptive jamming by frequency diverse array (FDA) in radar electronic countermeasure environments. FDA offers a new range-angle-dependent beam pattern through a small frequency increment across elements. Due to the coupling between the angle and range, a mismatch between the test angle and physical angle occurs when the slant range on which the beam focuses is not equal to the slant range of the real target. In addition, the range of the target can be extracted by sum-difference beam except for time-delay testing, because the beam provides a range resolution in the FDA that cannot be deceived by traditional deceptive jamming. A strategy of using FDA to transmit two pulses with zero and nonzero frequency increments, respectively, is proposed to ensure that the angle of a target can be obtained by FDA. Moreover, the localization performance is examined by analyzing the Cramer-Rao lower bound and detection probability. Effectiveness of the proposed method is confirmed by simulation results.

Key words

Frequency diverse array (FDA) Deceptive jamming Range-angle coupling Sum-difference beam Double-pulse 

CLC number

TN974 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhtar, J., 2009. Orthogonal block coded ECCM schemes against repeat radar jammers. IEEE Trans. Aerosp. Electron. Syst., 45(3):1218–1226. https://doi.org/10.1109/TAES.2009.5259195MathSciNetCrossRefGoogle Scholar
  2. Antonik, P., Wicks, M.C., Griffiths, H.D., et al., 2006. Multimission multi-mode waveform diversity. IEEE Conf. on Radar, p.215–217. https://doi.org/10.1109/RADAR.2006.1631858Google Scholar
  3. Cetintepe, C., Demir, S., 2014. Multipath characteristics of frequency diverse arrays over a ground plane. IEEE Trans. Antenn. Propag., 62(7):3567–3574. https://doi.org/10.1109/TAP.2014.2316292MathSciNetCrossRefMATHGoogle Scholar
  4. Cullens, E.D., Ranzani, L., Vanhille, K.J, et al., 2012. Microfabricated 130–180GHz frequency scanning waveguide arrays. IEEE Trans. Antenn. Propag., 60(8):3647–3653. https://doi.org/10.1109/TAP.2012.2201089CrossRefGoogle Scholar
  5. Huang, C., Chen, Z., Duan, R., 2013. Novel discrimination algorithm for deceptive jamming in polarimetric radar. Proc. Int. Conf. on Information Technology and Software Engineering, p.359–365. https://doi.org/10.1007/978-3-642-34528-9_38Google Scholar
  6. Jones, A.M., 2011. Frequency Diverse Array Receiver Architectures. MS Thesis, Wright State University, Dayton, USA.Google Scholar
  7. Lu, G., Tang, B., Gui, G., 2011. Deception ECM signals cancellation processor with joint time-frequency pulse diversity. IEICE Electron. Expr., 8(19):1608–1613. https://doi.org/10.1587/elex.8.1608CrossRefGoogle Scholar
  8. Lu, G., Chen, Y., Lei, Y., et al., 2013. Suppression of repeatintensive false targets based on temporal pulse diversity. Int. J. Antenn. Propag., 2013:575848. https://doi.org/10.1155/2013/575848Google Scholar
  9. Lu, G., Gui, G., Bu, Y., et al., 2016. Deception jammer suppression in fractional Fourier transformation domain with random chirp rate modulation. J. Chin. Inst. Eng., 39(6): 722–726. https://doi.org/10.1080/02533839.2016.1187081CrossRefGoogle Scholar
  10. Mahafza, B.R., Elsherbeni, A.Z., 2003. MATLAB Simulations for Radar Systems Design. Chapman & Hall/CRC, Boca Raton, USA. https://doi.org/10.1201/9780203502556CrossRefGoogle Scholar
  11. Rao, B., Zhao, Y.L., Xiao, S.P., et al., 2010. Discrimination of exo-atmospheric active decoys using acceleration information. IET Radar Sonar Navig., 4(4):626–638. https://doi.org/10.1049/iet-rsn.2009.0033CrossRefGoogle Scholar
  12. Rao, B., Xiao, S., Wang, X., 2011. Joint tracking and discrimination of exoatmospheric active decoys using ninedimensional parameter augmented EKF. Signal Process., 91(10):2247–2258. https://doi.org/10.1016/j.sigpro.2011.04.005CrossRefMATHGoogle Scholar
  13. Richards, M.A., 2005. Fundamentals of Radar Signal Processing. McGraw-Hill, New York, USA.Google Scholar
  14. Schuerger, J., Garmatyuk, D., 2009. Performance of random OFDM radar signals in deception jamming scenarios. IEEE Radar Conf., p.1–6. https://doi.org/10.1109/RADAR.2009.4977015Google Scholar
  15. Stoica, P., Moses, R., 2005. Spectral Analysis of Signals. Prentice Hall, Upper Saddle River, USA.Google Scholar
  16. Wang, W.Q., 2013. Phased-MIMO radar with frequency diversity for range-dependent beamforming. IEEE Sens. J., 13(4):1320–1328. https://doi.org/10.1109/JSEN.2012.2232909CrossRefGoogle Scholar
  17. Wang, W.Q., 2015. Frequency diverse array antenna: new opportunities. IEEE Antenn. Propag. Mag., 57(2):145–152. https://doi.org/10.1109/MAP.2015.2414692CrossRefGoogle Scholar
  18. Wang, W.Q., 2016a. Moving-target tracking by cognitive RF stealth radar using frequency diverse array antenna. IEEE Trans. Geosci. Remote Sens., 54(7):3764–3773. https://doi.org/10.1109/TGRS.2016.2527057CrossRefGoogle Scholar
  19. Wang, W.Q., 2016b. Overview of frequency diverse array in radar and navigation applications. IET Radar Sonar Navig., 10(6):1001–1012. https://doi.org/10.1049/iet-rsn.2015.0464CrossRefGoogle Scholar
  20. Wang, W.Q., Shao, H., 2012. A flexible phased-MIMO array antenna with transmit beamforming. Int. J. Antenn. Propag., 2012:609598. https://doi.org/10.1155/2012/609598Google Scholar
  21. Wang, W.Q., Shao, H., 2014. Range-angle localization of targets by a double-pulse frequency diverse array radar. IEEE J. Sel. Topics Signal Process., 8(1):106–114. https://doi.org/10.1109/JSTSP.2013.2285528CrossRefGoogle Scholar
  22. Wang, W.Q., So, H.C., 2014. Transmit subaperturing for range and angle estimation in frequency diverse array radar. IEEE Trans. Signal Process., 62(8):2000–2011. https://doi.org/10.1109/TSP.2014.2305638MathSciNetCrossRefGoogle Scholar
  23. Wang, Y., Wang, W.Q., Chen, H., et al., 2015. Optimal frequency diverse subarray design with Cramér-Rao lower bound minimization. IEEE Antenn. Wirel. Propag. Lett., 14:1188–1191. https://doi.org/10.1109/LAWP.2015.2396951CrossRefGoogle Scholar
  24. Wu, J., Wang, T., Zhang, L., et al., 2012. Range-dependent clutter suppression for airborne sidelooking radar using MIMO technique. IEEE Trans. Aerosp. Electron. Syst., 48(4):3647–3654. https://doi.org/10.1109/TAES.2012.6324751CrossRefGoogle Scholar
  25. Xiong, W., Zhang, G., Wen, F., et al., 2016. Trilinear decomposition-based spatial-polarization filter method for deception jamming suppression of radar. IET Radar Sonar Navig., 10(4):765–773. https://doi.org/10.1049/iet-rsn.2015.0348CrossRefGoogle Scholar
  26. Xu, J., Liao, G., Zhu, S., et al., 2015. Deceptive jamming suppression with frequency diverse MIMO radar. Signal Process., 113:9–17. https://doi.org/10.1016/j.sigpro.2015.01.014CrossRefGoogle Scholar
  27. Xu, Y., Shi, X., Xu, J., et al., 2015. Range-angle-dependent beamforming of pulsed frequency diverse array. IEEE Trans. Antenn. Propag., 63(7):3262–3267. https://doi.org/10.1109/TAP.2015.2423698MathSciNetCrossRefMATHGoogle Scholar
  28. Zhang, J., Zhu, D., Zhang, G., 2013. New anti-velocity deception jamming technique using pulses with adaptive initial phases. IEEE Trans. Aerosp. Electron. Syst., 49(2): 1290–1300. https://doi.org/10.1109/TAES.2013.6494414CrossRefGoogle Scholar
  29. Zhao, S., Zhang, L., Zhou, Y., et al., 2015. Signal fusion-based algorithms to discriminate between radar targets and deception jamming in distributed multiple-radar architectures. IEEE Sens. J., 15(11):6697–6706. https://doi.org/10.1109/JSEN.2015.2440769CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Air and Missile Defense CollegeAir Force Engineering UniversityXi’anChina

Personalised recommendations