Skip to main content
Log in

Deceptive jamming discrimination based on range-angle localization of a frequency diverse array

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We propose a method to suppress deceptive jamming by frequency diverse array (FDA) in radar electronic countermeasure environments. FDA offers a new range-angle-dependent beam pattern through a small frequency increment across elements. Due to the coupling between the angle and range, a mismatch between the test angle and physical angle occurs when the slant range on which the beam focuses is not equal to the slant range of the real target. In addition, the range of the target can be extracted by sum-difference beam except for time-delay testing, because the beam provides a range resolution in the FDA that cannot be deceived by traditional deceptive jamming. A strategy of using FDA to transmit two pulses with zero and nonzero frequency increments, respectively, is proposed to ensure that the angle of a target can be obtained by FDA. Moreover, the localization performance is examined by analyzing the Cramer-Rao lower bound and detection probability. Effectiveness of the proposed method is confirmed by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhtar, J., 2009. Orthogonal block coded ECCM schemes against repeat radar jammers. IEEE Trans. Aerosp. Electron. Syst., 45(3):1218–1226. https://doi.org/10.1109/TAES.2009.5259195

    Article  Google Scholar 

  • Antonik, P., Wicks, M.C., Griffiths, H.D., et al., 2006. Multimission multi-mode waveform diversity. IEEE Conf. on Radar, p.215–217. https://doi.org/10.1109/RADAR.2006.1631858

    Google Scholar 

  • Cetintepe, C., Demir, S., 2014. Multipath characteristics of frequency diverse arrays over a ground plane. IEEE Trans. Antenn. Propag., 62(7):3567–3574. https://doi.org/10.1109/TAP.2014.2316292

    Article  MathSciNet  Google Scholar 

  • Cullens, E.D., Ranzani, L., Vanhille, K.J, et al., 2012. Microfabricated 130–180GHz frequency scanning waveguide arrays. IEEE Trans. Antenn. Propag., 60(8):3647–3653. https://doi.org/10.1109/TAP.2012.2201089

    Article  Google Scholar 

  • Huang, C., Chen, Z., Duan, R., 2013. Novel discrimination algorithm for deceptive jamming in polarimetric radar. Proc. Int. Conf. on Information Technology and Software Engineering, p.359–365. https://doi.org/10.1007/978-3-642-34528-9_38

    Google Scholar 

  • Jones, A.M., 2011. Frequency Diverse Array Receiver Architectures. MS Thesis, Wright State University, Dayton, USA.

    Google Scholar 

  • Lu, G., Tang, B., Gui, G., 2011. Deception ECM signals cancellation processor with joint time-frequency pulse diversity. IEICE Electron. Expr., 8(19):1608–1613. https://doi.org/10.1587/elex.8.1608

    Article  Google Scholar 

  • Lu, G., Chen, Y., Lei, Y., et al., 2013. Suppression of repeatintensive false targets based on temporal pulse diversity. Int. J. Antenn. Propag., 2013:575848. https://doi.org/10.1155/2013/575848

    Google Scholar 

  • Lu, G., Gui, G., Bu, Y., et al., 2016. Deception jammer suppression in fractional Fourier transformation domain with random chirp rate modulation. J. Chin. Inst. Eng., 39(6): 722–726. https://doi.org/10.1080/02533839.2016.1187081

    Article  Google Scholar 

  • Mahafza, B.R., Elsherbeni, A.Z., 2003. MATLAB Simulations for Radar Systems Design. Chapman & Hall/CRC, Boca Raton, USA. https://doi.org/10.1201/9780203502556

    Book  Google Scholar 

  • Rao, B., Zhao, Y.L., Xiao, S.P., et al., 2010. Discrimination of exo-atmospheric active decoys using acceleration information. IET Radar Sonar Navig., 4(4):626–638. https://doi.org/10.1049/iet-rsn.2009.0033

    Article  Google Scholar 

  • Rao, B., Xiao, S., Wang, X., 2011. Joint tracking and discrimination of exoatmospheric active decoys using ninedimensional parameter augmented EKF. Signal Process., 91(10):2247–2258. https://doi.org/10.1016/j.sigpro.2011.04.005

    Article  Google Scholar 

  • Richards, M.A., 2005. Fundamentals of Radar Signal Processing. McGraw-Hill, New York, USA.

    Google Scholar 

  • Schuerger, J., Garmatyuk, D., 2009. Performance of random OFDM radar signals in deception jamming scenarios. IEEE Radar Conf., p.1–6. https://doi.org/10.1109/RADAR.2009.4977015

    Google Scholar 

  • Stoica, P., Moses, R., 2005. Spectral Analysis of Signals. Prentice Hall, Upper Saddle River, USA.

    Google Scholar 

  • Wang, W.Q., 2013. Phased-MIMO radar with frequency diversity for range-dependent beamforming. IEEE Sens. J., 13(4):1320–1328. https://doi.org/10.1109/JSEN.2012.2232909

    Article  Google Scholar 

  • Wang, W.Q., 2015. Frequency diverse array antenna: new opportunities. IEEE Antenn. Propag. Mag., 57(2):145–152. https://doi.org/10.1109/MAP.2015.2414692

    Article  Google Scholar 

  • Wang, W.Q., 2016a. Moving-target tracking by cognitive RF stealth radar using frequency diverse array antenna. IEEE Trans. Geosci. Remote Sens., 54(7):3764–3773. https://doi.org/10.1109/TGRS.2016.2527057

    Article  Google Scholar 

  • Wang, W.Q., 2016b. Overview of frequency diverse array in radar and navigation applications. IET Radar Sonar Navig., 10(6):1001–1012. https://doi.org/10.1049/iet-rsn.2015.0464

    Article  Google Scholar 

  • Wang, W.Q., Shao, H., 2012. A flexible phased-MIMO array antenna with transmit beamforming. Int. J. Antenn. Propag., 2012:609598. https://doi.org/10.1155/2012/609598

    Google Scholar 

  • Wang, W.Q., Shao, H., 2014. Range-angle localization of targets by a double-pulse frequency diverse array radar. IEEE J. Sel. Topics Signal Process., 8(1):106–114. https://doi.org/10.1109/JSTSP.2013.2285528

    Article  Google Scholar 

  • Wang, W.Q., So, H.C., 2014. Transmit subaperturing for range and angle estimation in frequency diverse array radar. IEEE Trans. Signal Process., 62(8):2000–2011. https://doi.org/10.1109/TSP.2014.2305638

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Wang, W.Q., Chen, H., et al., 2015. Optimal frequency diverse subarray design with Cramér-Rao lower bound minimization. IEEE Antenn. Wirel. Propag. Lett., 14:1188–1191. https://doi.org/10.1109/LAWP.2015.2396951

    Article  Google Scholar 

  • Wu, J., Wang, T., Zhang, L., et al., 2012. Range-dependent clutter suppression for airborne sidelooking radar using MIMO technique. IEEE Trans. Aerosp. Electron. Syst., 48(4):3647–3654. https://doi.org/10.1109/TAES.2012.6324751

    Article  Google Scholar 

  • Xiong, W., Zhang, G., Wen, F., et al., 2016. Trilinear decomposition-based spatial-polarization filter method for deception jamming suppression of radar. IET Radar Sonar Navig., 10(4):765–773. https://doi.org/10.1049/iet-rsn.2015.0348

    Article  Google Scholar 

  • Xu, J., Liao, G., Zhu, S., et al., 2015. Deceptive jamming suppression with frequency diverse MIMO radar. Signal Process., 113:9–17. https://doi.org/10.1016/j.sigpro.2015.01.014

    Article  Google Scholar 

  • Xu, Y., Shi, X., Xu, J., et al., 2015. Range-angle-dependent beamforming of pulsed frequency diverse array. IEEE Trans. Antenn. Propag., 63(7):3262–3267. https://doi.org/10.1109/TAP.2015.2423698

    Article  MathSciNet  Google Scholar 

  • Zhang, J., Zhu, D., Zhang, G., 2013. New anti-velocity deception jamming technique using pulses with adaptive initial phases. IEEE Trans. Aerosp. Electron. Syst., 49(2): 1290–1300. https://doi.org/10.1109/TAES.2013.6494414

    Article  Google Scholar 

  • Zhao, S., Zhang, L., Zhou, Y., et al., 2015. Signal fusion-based algorithms to discriminate between radar targets and deception jamming in distributed multiple-radar architectures. IEEE Sens. J., 15(11):6697–6706. https://doi.org/10.1109/JSEN.2015.2440769

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-jian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zj., Xie, Jw., Sheng, C. et al. Deceptive jamming discrimination based on range-angle localization of a frequency diverse array. Frontiers Inf Technol Electronic Eng 18, 1437–1446 (2017). https://doi.org/10.1631/FITEE.1601577

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601577

Key words

CLC number

Navigation