DGTM: a dynamic grouping based trust model for mobile peer-to-peer networks

  • Mei-juan Jia
  • Hui-qiang Wang
  • Jun-yu Lin
  • Guang-sheng Feng
  • Hai-tao Yu


The special characteristics of the mobile environment, such as limited bandwidth, dynamic topology, heterogeneity of peers, and limited power, pose additional challenges on mobile peer-to-peer (MP2P) networks. Trust management becomes an essential component of MP2P networks to promote peer transactions. However, in an MP2P network, peers frequently join and leave the network, which dynamically changes the network topology. Thus, it is difficult to establish long-term and effective trust relationships among peers. In this paper, we propose a dynamic grouping based trust model (DGTM) to classify peers. A group is formed according to the peers’ interests. Within a group, mobile peers share resources and tend to keep stable trust relationships. We propose three peer roles (super peers, relay peers, and ordinary peers) and two novel trust metrics (intragroup trust and intergroup trust). The two metrics are used to accurately measure the trust between two peers from the same group or from different groups. Simulations illustrate that our proposed DGTM always achieves the highest successful transaction rate and the best communication overhead under different circumstances.

Key words

Mobile P2P networks Trust management Dynamic grouping Super peer 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almenárez, F., Marín, A., Díaz, D., et al., 2011. Trust management for multimedia P2P applications in autonomic networking. Ad Hoc Netw., 9(4): 687–697. http://dx.doi.org/10.1016/j.adhoc.2010.09.005CrossRefGoogle Scholar
  2. Al-Oufi, S., Kim, H.N., El Saddik, A., 2012. A group trust metric for identifying people of trust in online social networks. Expert Syst. Appl., 39(18): 13173–13181. http://dx.doi.org/10.1016/j.eswa.2012.05.084CrossRefGoogle Scholar
  3. Castro, M.C., Kassler, A.J., Chiasserini, C.F., et al., 2009. Peer-to-peer overlay in mobile ad-hoc networks. In: Shen, X.M., Yu, H., Buford, J., et al. (Eds.), Handbook of Peer-to-Peer Networking. Springer US,p.1045–1080. https://doi.org/10.1007/978-0-387-09751-0_37Google Scholar
  4. Chang, B.J., Kuo, S.L., 2009. Markov chain trust model for trust-value analysis and key management in distributed multicast MANETs. IEEE Trans. Veh. Technol., 58(4): 1846–1863. http://dx.doi.org/10.1109/TVT.2008.2005415CrossRefGoogle Scholar
  5. Chen, X., Proulx, B., Gong, X.W., et al., 2015. Exploiting social ties for cooperative D2D communications: a mobile social networking case. IEEE/ACM Trans. Netw., 23(5): 1471–1484. http://dx.doi.org/10.1109/TNET.2014.2329956CrossRefGoogle Scholar
  6. Chen, X., Gong, X.W., Yang, L., et al., 2016. Exploiting social tie structure for cooperative wireless networking: a social group utility maximization framework. IEEE/ACM Trans. Netw., 24(6): 3593–3606. http://dx.doi.org/10.1109/TNET.2016.2530070CrossRefGoogle Scholar
  7. Easa, F.R., Bafghi, A.G., Shakeri, H., 2012. A groupbased trust propagation method. 2nd Int. eConf. on Computer and Knowledge Engineering, p.313–317. http://dx.doi.org/10.1109/ICCKE.2012.6395398Google Scholar
  8. Jeyaraj, J.A.S., Subadra, S., 2014. A study on dynamic source routing in ad hoc wireless networks. Int. J. Eng. Trends Technol., 8(7): 401–410. http://dx.doi.org/10.14445/22315381/IJETT-V8P269CrossRefGoogle Scholar
  9. Jia, M.J., Wang, H.Q., Ye, B., et al., 2016. A dynamic grouping-based trust model for mobile P2P networks. 13th IEEE Int. Conf. on Services Computing, p.848–851. http://dx.doi.org/10.1109/SCC.2016.121Google Scholar
  10. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H., 2003. The eigentrust algorithm for reputation management in P2P networks. Proc. 12th Int. Conf. on World Wide Web, p.640–651. http://dx.doi.org/10.1145/775152.775242Google Scholar
  11. Kassinen, O., Harjula, E., Korhonen, J., et al., 2009. Battery life of mobile peers with UMTS and WLAN in a Kademlia-based P2P overlay. 20th Int. Symp. on Personal, Indoor and Mobile Radio Communications, p.662–665. http://dx.doi.org/10.1109/PIMRC.2009.5450083Google Scholar
  12. Largillier, T., Vassileva, J., 2012. Using collective trust for group formation. LNCS, 7493: 137–144. http://dx.doi.org/10.1007/978-3-642-33284-5_12Google Scholar
  13. Leskovec, J., Huttenlocher, D., Kleinberg, J., 2010. Signed networks in social media. Proc. SIGCHI Conf. on Human Factors in Computing Systems, p.1361–1370. http://dx.doi.org/10.1145/1753326.1753532Google Scholar
  14. Liang, Z.Q., Shi, W.S., 2005. PET: a PErsonalized Trust model with reputation and risk evaluation for P2P resource sharing. Proc. 38th Annual Hawaii Int. Conf. on System Sciences, p.201b. http://dx.doi.org/10.1109/HICSS.2005.493CrossRefGoogle Scholar
  15. Nayak, J., Naik, B., Kanungo, D.P., et al., 2015. An improved swarm based hybrid K-means clustering for optimal cluster centers. 2nd Int. Conf. on Information Systems Design and Intelligent Applications, p.545–553. http://dx.doi.org/10.1007/978-81-322-2250-7_54Google Scholar
  16. Ou, Z.H., Song, M.N., Zhan, X.S., et al., 2008. Key techniques for mobile peer-to-peer networks. J. Softw., 19(2): 404–418 (in Chinese). http://dx.doi.org/10.3724/sp.j.1001.2008.00404CrossRefGoogle Scholar
  17. Qureshi, B., Min, G., Kouvatsos, D., 2010. M-Trust: a trust management scheme for mobile P2P networks. IEEE/IFIP 8th Int. Conf. on Embedded and Ubiquitous Computing, p.476–483. http://dx.doi.org/10.1109/euc.2010.79Google Scholar
  18. Qureshi, B., Min, G., Kouvatsos, D., 2012. A distributed reputation and trust management scheme for mobile peer-to-peer networks. Comput. Commun., 35(5): 608–618. http://dx.doi.org/10.1016/j.comcom.2011.07.008CrossRefGoogle Scholar
  19. Ranjan, R., Zhao, L., 2013. Peer-to-peer service provisioning in cloud computing environments. J. Supercomput., 65(1): 154–184. http://dx.doi.org/10.1007/s11227-011-0710-5CrossRefGoogle Scholar
  20. Ratnasamy, S., Karp, B., Yin, L., et al., 2002. GHT: a geographic hash table for data-centric storage. ACM Int. Workshop on Wireless Sensor Networks and Applications, p.78–87. http://dx.doi.org/10.1145/570738.570750Google Scholar
  21. Spaho, E., Kulla, E., Xhafa, F., et al., 2012. P2P solutions to efficient mobile peer collaboration in MANETs. 7th Int. Conf. on P2P, Parallel, Grid, Cloud and Internet Computing. http://dx.doi.org/10.1109/3pgcic.2012.50Google Scholar
  22. Sun, Z.X., Tang, Y.W., 2007. Multilayer and grouping P2P trust model based on global reputation. J. Commun., 28(9): 133–140 (in Chinese).Google Scholar
  23. Tan, H., Wang, Y., Hao, X.H., et al., 2010. Arbitrary obstacles constrained full coverage in wireless sensor networks. Proc. 5th Int. Conf. on Wireless Algorithms, Systems, and Applications, p.1–10. http://dx.doi.org/10.1007/978-3-642-14654-1_1Google Scholar
  24. Tian, C., Jiang, J., Hu, Z., et al., 2010. A novel super-peer based trust model for peer-to-peer networks. Chin. J. Comput., 33(2): 345–355 (in Chinese). http://dx.doi.org/10.3724/sp.j.1016..2010.00345CrossRefGoogle Scholar
  25. Tian, H.R., Zou, S.H., Wang, W.D., et al., 2006. A group based reputation system for P2P networks. LNCS, 4158: 342–351. http://dx.doi.org/10.1007/11839569_33Google Scholar
  26. Wu, X., 2011. A stable group-based trust management scheme for mobile P2P networks. Int. J. Dig. Cont. Technol. Appl., 5(2): 116–125. http://dx.doi.org/10.4156/jdcta.vol5.issue2.13Google Scholar
  27. Xiong, L., Liu, L., 2004. PeerTrust: supporting reputationbased trust for peer-to-peer electronic communities. IEEE Trans. Knowl. Data Eng., 16(7): 843–857. http://dx.doi.org/10.1109/TKDE.2004.1318566CrossRefGoogle Scholar
  28. Yang, H.S., Sun, J.H., 2016. A study on hybrid trust evaluation model for identifying malicious behavior in mobile P2P. Peer-to-Peer Netw. Appl., 9(3): 578–587. http://dx.doi.org/10.1007/s12083-015-0411-6MathSciNetCrossRefGoogle Scholar
  29. Yates, J.S., Storch, M.F., Nijhawan, S., et al., 2012. Apparatus for Executing Programs for a First Computer Architecture on a Computer of a Second Architecture. US Patent 8 127 121.Google Scholar
  30. Zhang, Y.C., Chen, S.S., Yang, G., 2009. SFTrust: a double trust metric based trust model in unstructured P2P system. IEEE Int. Symp. on Parallel & Distributed Processing, p.1–7. http://dx.doi.org/10.1109/IPDPS.2009.5161240Google Scholar
  31. Zhou, R.F., Hwang, K., 2007. PowerTrust: a robust and scalable reputation system for trusted peer-to-peer computing. IEEE Trans. Parall. Distr. Syst., 18(4): 460–473. http://dx.doi.org/10.1109/TPDS.2007.1021CrossRefGoogle Scholar
  32. Zhou, R.F., Hwang, K., Cai, M., 2008. GossipTrust for fast reputation aggregation in peer-to-peer networks. IEEE Trans. Knowl. Data Eng., 20(9): 1282–1295. http://dx.doi.org/10.1109/TKDE.2008.48CrossRefGoogle Scholar
  33. Zhu, H.F., Bao, F., 2007. Quantifying trust metrics of recommendation systems in ad-hoc networks. IEEE Wireless Communications and Networking Conf., p.2904–2908. http://dx.doi.org/10.1109/WCNC.2007.538Google Scholar
  34. Zhuge, H., Chen, X., Sun, X.P., et al., 2008. HRing: a structured P2P overlay based on harmonic series. IEEE Trans. Parall. Distr. Syst., 19(2): 145–158. http://dx.doi.org/10.1109/TPDS.2007.70725CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Mei-juan Jia
    • 1
    • 2
  • Hui-qiang Wang
    • 1
  • Jun-yu Lin
    • 3
  • Guang-sheng Feng
    • 1
  • Hai-tao Yu
    • 4
  1. 1.College of Computer Science and TechnologyHarbin Engineering UniversityHarbinChina
  2. 2.College of Computer Science and Information TechnologyDaqing Normal UniversityDaqingChina
  3. 3.Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  4. 4.College of TourismGuilin University of TechnologyGuilinChina

Personalised recommendations