Skip to main content
Log in

Hierarchical control for parallel bidirectional power converters of a grid-connected DC microgrid

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The DC microgrid is connected to the AC utility by parallel bidirectional power converters (BPCs) to import/export large power, whose control directly affects the performance of the grid-connected DC microgrid. Much work has focused on the hierarchical control of the DC, AC, and hybrid microgrids, but little has considered the hierarchical control of multiple parallel BPCs that directly connect the DC microgrid to the AC utility. In this paper, we propose a hierarchical control for parallel BPCs of a grid-connected DC microgrid. To suppress the potential zero-sequence circulating current in the AC side among the parallel BPCs and realize feedback linearization of the voltage control, a d-q-0 control scheme instead of a conventional d-q control scheme is proposed in the inner current loop, and the square of the DC voltage is adopted in the inner voltage loop. DC side droop control is applied to realize DC current sharing among multiple BPCs at the primary control level, and this induces DC bus voltage deviation. The quantified relationship between the current sharing error and DC voltage deviation is derived, indicating that there is a trade-off between the DC voltage deviation and current sharing error. To eliminate the current sharing error and DC voltage deviation simultaneously, slope-adjusting and voltage-shifting approaches are adopted at the secondary control level. The proposed tertiary control realizes precise active and reactive power exchange through parallel BPCs for economical operation. The proposed hierarchical control is applied for parallel BPCs of a grid-connected DC microgrid and can operate coordinately with the control for controllable/uncontrollable distributional generation. The effectiveness of the proposed control method is verified by corresponding simulation tests based on Matlab/Simulink, and the performance of the hierarchical control is evaluated for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand, S., Fernandes, B.G., Guerrero, J., 2013. Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids. IEEE Trans. Power Electron., 28(4):1900–1913. https://doi.org/10.1109/TPEL.2012.2215055

    Article  Google Scholar 

  • Bao, J.Y., Bao, W.B., Zhang, Z.C., 2010. Generalized multilevel current source inverter topology with selfbalancing current. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(7):555–561. https://doi.org/10.1631/jzus.C0910605

    Article  Google Scholar 

  • Bao, X.W., Zhuo, F., Tian, Y., et al., 2013. Simplified feedback linearization control of three-phase photovoltaic inverter with an LCL filter. IEEE Trans. Power Electron., 28(6):2739–2752. https://doi.org/10.1109/TPEL.2012.2225076

    Article  Google Scholar 

  • Bidram, A., Davoudi, A., Lewis, F.L., et al., 2013. Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Trans. Power Syst., 28(3):3462–3470. https://doi.org/10.1109/TPWRS.2013.2247071

    Article  Google Scholar 

  • Blasko, V., Kaura, V., 1997. A novel control to actively damp resonance in input LC filter of a three-phase voltage source converter. IEEE Trans. Ind. Appl., 33(2):542–550. https://doi.org/10.1109/28.568021

    Article  Google Scholar 

  • Che, L., Shahidehpour, M., Alabdulwahab, A., et al., 2015. Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Trans. Smart Grid, 6(6):3042–3051. https://doi.org/10.1109/TSG.2015.2398853

    Article  Google Scholar 

  • Chen, T.P., 2012. Zero-sequence circulating current reduction method for parallel HEPWM inverters between AC bus and DC bus. IEEE Trans. Ind. Electron., 59(1):290–300. https://doi.org/10.1109/TIE.2011.2106102

    Article  Google Scholar 

  • Dragičević, T., Lu, X.N., Vasquez, J.C., et al., 2016. DC microgrids-part I: A review of control strategies and stabilization techniques. IEEE Trans. Power Electron., 31(7):4876–4891. https://doi.org/10.1109/TPEL.2015.2478859

    Google Scholar 

  • Eto, J., Lasseter, R., Schenkman, B., et al., 2009. Overview of the CERTS microgrid laboratory test bed. IEEE Trans. Power Del., 26(1):325–332. https://doi.org/10.1109/TPWRD.2010.2051819

    Google Scholar 

  • Gao, M.Z., Chen, M., Jin, C., et al., 2013. Analysis, design, and experimental evaluation of power calculation in digital droop-controlled parallel microgrid inverters. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(1):50–64. https://doi.org/10.1631/jzus.C1200236

    Article  Google Scholar 

  • Guerrero, J.M., Vasquez, J.C., Matas, J., et al., 2011. Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans. Ind. Electron., 58(1):158–172. https://doi.org/10.1109/TIE.2010.2066534

    Article  Google Scholar 

  • Guo, T.T., Liu, X.L., Hao, S.Q., et al., 2015. Analysis and design of pulse frequency modulation dielectric barrier discharge for low power applications. Front. Inform. Technol. Electron. Eng., 16(3):249–258. https://doi.org/10.1631/FITEE.1400185

    Article  Google Scholar 

  • Khorsandi, A., Ashourloo, M., Mokhtari, H., 2014. A decentralized control method for a low-voltage DC microgrid. IEEE Trans. Energy Conv., 29(4):793–801. https://doi.org/10.1109/TEC.2014.2329236

    Article  Google Scholar 

  • Lasseter, R., Akhil, A., Marnay, C., et al., 2002. Consortium for Electric Reliability Technology Solutions. White Paper on Integration of Distributed Energy Resources. The CERTS MicroGrid Concept, p.1–29.

    Chapter  Google Scholar 

  • Lee, T.S., 2003. Input-output linearization and zero-dynamics control of three-phase AC/DC voltage-source converters. IEEE Trans. Power Electron., 18(1):11–22. https://doi.org/10.1109/TPEL.2002.807145

    Article  Google Scholar 

  • Loh, P.C., Li, D., Chai, Y.K., et al., 2013. Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid. IEEE Trans. Ind. Appl., 49(3):1374–1382. https://doi.org/10.1109/TIA.2013.2252319

    Article  Google Scholar 

  • Lu, X.N., Guerrero, J.M., Sun, K., et al., 2014a. Hierarchical control of parallel AC-DC converter interfaces for hybrid microgrids. IEEE Trans. Smart Grid, 5(2):683–692. https://doi.org/10.1109/TSG.2013.2272327

    Article  Google Scholar 

  • Lu, X.N., Guerrero, J.M., Sun, K., et al., 2014b. An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy. IEEE Trans. Power Electron., 29(4):1800–1812. https://doi.org/10.1109/TPEL.2013.2266419

    Article  Google Scholar 

  • Meng, L.X., Dragicevic, T., Vasquez, J.C., et al., 2015. Tertiary and secondary control levels for efficiency optimization and system damping in droop controlled DC-DC converters. IEEE Trans. Smart Grid, 6(6):2615–2626 https://doi.org/10.1109/TSG.2015.2435055

    Article  Google Scholar 

  • Nasirian, V., Davoudi, A., Lewis, F.L., et al., 2014. Distributed adaptive droop control for DC distribution systems. IEEE Trans. Energy Conv., 29(4):944–956. https://doi.org/10.1109/TEC.2014.2350458

    Article  Google Scholar 

  • Nasirian, V., Moayedi, S., Davoudi, A., et al., 2015. Distributed cooperative control of DC microgrids. IEEE Trans. Power Electron., 30(4):2288–2303. https://doi.org/10.1109/TPEL.2014.2324579

    Article  Google Scholar 

  • Pan, C.T., Liao, Y.H., 2008. Modeling and control of circulating currents for parallel three-phase boost rectifiers with different load sharing. IEEE Trans. Ind. Electron., 55(7):2776–2785. https://doi.org/10.1109/TIE.2008.925647

    Article  Google Scholar 

  • Shafiee, Q., Dragičević, T., Vasquez, J.C., et al., 2014. Hierarchical control for multiple DC-microgrids clusters. IEEE Trans. Energy Conv., 29(4):922–933. https://doi.org/10.1109/TEC.2014.2362191

    Article  Google Scholar 

  • Torreglosa, J.P., García-Triviño, P., Fernández-Ramirez, L.M., et al., 2016. Control strategies for DC networks: a systematic literature review. Renew. Sust. Energy Rev., 58:319–330. https://doi.org/10.1016/j.rser.2015.12.314

    Article  Google Scholar 

  • Unamuno, E., Barrena, J.A., 2015. Hybrid ac/dc microgrids—Part II: review and classification of control strategies. Renew. Sustain. Energy Rev., 52:1123–1134. https://doi.org/10.1016/j.rser.2015.07.186

    Article  Google Scholar 

  • Wang, L.J., Yang, T., Zhang, D.M., et al., 2012. A high performance simulation methodology for multilevel gridconnected inverters. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(7):544–551. https://doi.org/10.1631/jzus.C1100315

    Article  Google Scholar 

  • Wang, P.B., Lu, X.N., Yang, X., et al., 2016. An improved distributed secondary control method for DC microgrids with enhanced dynamic current sharing performance. IEEE Trans. Power Electron., 31(9):6658–6673. https://doi.org/10.1109/TPEL.2015.2499310

    Article  Google Scholar 

  • Xiao, H.G., Luo, A., Shuai, Z.K., et al., 2016. An improved control method for multiple bidirectional power converters in hybrid AC/DC microgrid. IEEE Trans. Smart Grid, 7(1):340–347. https://doi.org/10.1109/TSG.2015.2469758

    Article  Google Scholar 

  • Xiao, J.F., Wang, P., Setyawan, L., 2016. Multilevel energy management system for hybridization of energy storages in DC microgrids. IEEE Trans. Smart Grid, 7(2):847–856. https://doi.org/10.1109/TSG.2015.2424983

    Google Scholar 

  • Xu, L., Chen, D., 2011. Control and operation of a DC microgrid with variable generation and energy storage. IEEE Trans. Power Del., 26(4):2513–2522. https://doi.org/10.1109/TPWRD.2011.2158456

    Article  MathSciNet  Google Scholar 

  • Ye, Z.H., Boroyevich, D., Choi, J.Y., et al., 2002. Control of circulating current in two parallel three-phase boost rectifiers. IEEE Trans. Power Electron., 17(5):609–615. https://doi.org/10.1109/TPEL.2002.802170

    Article  Google Scholar 

  • Zhang, D., Wang, F.F., Burgos, R., et al., 2011. Common-mode circulating current control of paralleled interleaved threephase two-level voltage-source converters with discontinuous space-vector modulation. IEEE Trans. Power Electron., 26(12):3925–3935. https://doi.org/10.1109/TPEL.2011.2131681

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-gang Peng.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51377142), the National High-Tech R&D Program (863) of China (No. 2014AA052001), the Zhejiang Provincial Natural Science Foundation of China (No. LY16E070002), and the Zhejiang Province Key R&D Project (No. 2017C01039)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Hy., Peng, Yg., Xia, Yh. et al. Hierarchical control for parallel bidirectional power converters of a grid-connected DC microgrid. Frontiers Inf Technol Electronic Eng 18, 2046–2057 (2017). https://doi.org/10.1631/FITEE.1601497

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601497

Key words

CLC number

Navigation