Moving target defense: state of the art and characteristics

  • Gui-lin Cai
  • Bao-sheng Wang
  • Wei Hu
  • Tian-zuo Wang
Review

Abstract

Moving target defense (MTD) has emerged as one of the game-changing themes to alter the asymmetric situation between attacks and defenses in cyber-security. Numerous related works involving several facets of MTD have been published. However, comprehensive analyses and research on MTD are still absent. In this paper, we present a survey on MTD technologies to scientifically and systematically introduce, categorize, and summarize the existing research works in this field. First, a new security model is introduced to describe the changes in the traditional defense paradigm and security model caused by the introduction of MTD. A function-and-movement model is provided to give a panoramic overview on different perspectives for understanding the existing MTD research works. Then a systematic interpretation of published literature is presented to describe the state of the art of the three main areas in the MTD field, namely, MTD theory, MTD strategy, and MTD evaluation. Specifically, in the area of MTD strategy, the common characteristics shared by the MTD strategies to improve system security and effectiveness are identified and extrapolated. Thereafter, the methods to implement these characteristics are concluded. Moreover, the MTD strategies are classified into three types according to their specific goals, and the necessary and sufficient conditions of each type to create effective MTD strategies are then summarized, which are typically one or more of the aforementioned characteristics. Finally, we provide a number of observations for the future direction in this field, which can be helpful for subsequent researchers.

Key words

Moving target defense Security model Function-and-movement model Characteristics 

CLC number

TP393 

References

  1. Albanese, M., de Benedictis, A., Jajodia, S., et al., 2013. A moving target defense mechanism for MANETs based on identity virtualization. Proc. IEEE Conf. on Communications and Network Security, p.278–286.  https://doi.org/10.1109/CNS.2013.6682717Google Scholar
  2. Al-Shaer, E., 2011. Toward network configuration randomization for moving target defense. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.153–159.  https://doi.org/10.1007/978-1-4614-0977-9_9CrossRefGoogle Scholar
  3. Al-Shaer, E., Duan, Q., Jafarian, J.H., 2013. Random host mutation for moving target defense. In: Keromytis, A.D., di Pietro, R. (Eds.), Security and Privacy in Communication Networks. Springer Berlin Heidelberg, Germany, p.310–327.  https://doi.org/10.1007/978-3-642-36883-7_19CrossRefGoogle Scholar
  4. Andel, T.R., Whitehurst, L.N., McDonald, J.T., 2014. Software security and randomization through program partitioning and circuit variation. Proc. 1st ACM Workshop on Moving Target Defense, p.79–86.  https://doi.org/10.1145/2663474.2663484Google Scholar
  5. Azab, M., Hassan, R., Eltoweissy, M., 2011. ChameleonSoft: a moving target defense system. Proc. 7th Int. Conf. on Collaborative Computing: Networking, Applications and Worksharing, p.241–250.Google Scholar
  6. Bangalore, A.K., Sood, A.K., 2009. Securing web servers using self cleansing intrusion tolerance (SCIT). Proc. 2nd Int. Conf. on Dependability, p.60–65.  https://doi.org/10.1109/DEPEND.2009.15Google Scholar
  7. Beraud, P., Cruz, A., Hassell, S., et al., 2010. Cyber defense network maneuver commander. Proc. IEEE Int. Carnahan Conf. on Security Technology, p.112–120.  https://doi.org/10.1109/CCST.2010.5678724Google Scholar
  8. Beraud, P., Cruz, A., Hassell, S., et al., 2011. Using cyber maneuver to improve network resiliency. Proc. Military Communications Conf., p.1121–1126.  https://doi.org/10.1109/MILCOM.2011.6127449Google Scholar
  9. Bilar, D., Cybenko, G., Murphy, J., 2013. Adversarial dynamics: the conficker case study. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.41–71.  https://doi.org/10.1007/978-1-4614-5416-8_3CrossRefGoogle Scholar
  10. Cai, G.L., Wang, B.S., Luo, Y.B., et al., 2016. Characterizing the running patterns of moving target defense mechanisms. Proc. 18th Int. Conf. on Advanced Communication Technology, p.191–196.  https://doi.org/10.1109/ICACT.2016.7423324Google Scholar
  11. Carroll, T.E., Crouse, M., Fulp, E.W., et al., 2014. Analysis of network address shuffling as a moving target defense. Proc. IEEE Int. Conf. on Communications, p.701–706.  https://doi.org/10.1109/ICC.2014.6883401Google Scholar
  12. Carter, K.M., Riordan, J.F., Okhravi, H., 2014. A game theoretic approach to strategy determination for dynamic platform defenses. Proc. 1st ACM Workshop on Moving Target Defense, p.21–30.  https://doi.org/10.1145/2663474.2663478Google Scholar
  13. Carvalho, M., Ford, R., 2014. Moving-target defenses for computer networks. IEEE Sec. Priv., 12(2):73–76.  https://doi.org/10.1109/MSP.2014.30CrossRefGoogle Scholar
  14. Carvalho, M., Bradshaw, J.M., Bunch, L., et al., 2012. Command and control requirements for moving-target defense. IEEE Intell. Syst., 27(3):79–85.  https://doi.org/10.1109/MIS.2012.45CrossRefGoogle Scholar
  15. Carvalho, M., Eskridge, T.C., Bunch, L., et al., 2013. MTC2: a command and control framework for moving target defense and cyber resilience. Proc. 6th Int. Symp. on Resilient Control Systems, p.175–180.  https://doi.org/10.1109/ISRCS.2013.6623772Google Scholar
  16. Casola, V., de Benedictis, A., Albanese, M., 2014. A multi-layer moving target defense approach for protecting resource-constrained distributed devices. In: Bouabana-Tebibel, T., Rubin, S.H. (Eds.), Integration of Reusable Systems. Springer International Publishing, Switzerland, p.299–324.  https://doi.org/10.1007/978-3-319-04717-1_14CrossRefGoogle Scholar
  17. Chavez, A.R., Stout, W.M.S., Peisert, S., 2015. Techniques for the dynamic randomization of network attributes. Proc. Int. Carnahan Conf. on Security Technology, p.1–6.  https://doi.org/10.1109/CCST.2015.7389661Google Scholar
  18. Christodorescu, M., Fredrikson, M., Jha, S., et al., 2011. End-to-end software diversification of Internet services. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.117–130.  https://doi.org/10.1007/978-1-4614-0977-9_7CrossRefGoogle Scholar
  19. Clark, A., Sun, K., Poovendran, R., 2013. Effectiveness of IP address randomization in decoy-based moving target defense. Proc. 52nd IEEE Conf. on Decision and Control, p.678–685.  https://doi.org/10.1109/CDC.2013.6759960CrossRefGoogle Scholar
  20. Colbaugh, R., Glass, K., 2012. Predictability-oriented defense against adaptive adversaries. Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, p.2721–2727.  https://doi.org/10.1109/ICSMC.2012.6378159Google Scholar
  21. Corbett, C., Uher, J., Cook, J., et al., 2014. Countering intelligent jamming with full protocol stack agility. IEEE Sec. Priv., 12(2):44–50.  https://doi.org/10.1109/MSP.2013.136CrossRefGoogle Scholar
  22. Crosby, S., Carvalho, M., Kidwell, D., 2013. A layered approach to understanding network dependencies on moving target defense mechanisms. Proc. 8th Annual Cyber Security and Information Intelligence Research Workshop, Article 36.  https://doi.org/10.1145/2459976.2460017Google Scholar
  23. Crouse, M., Prosser, B., Fulp, E.W., 2015. Probabilistic performance analysis of moving target and deception reconnaissance defenses. Proc. 2nd ACM Workshop on Moving Target Defense, p.21–29.  https://doi.org/10.1145/2808475.2808480CrossRefGoogle Scholar
  24. Cui, A., Stolfo, S.J., 2011. Symbiotes and defensive mutualism: moving target defense. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.99–108.  https://doi.org/10.1007/978-1-4614-0977-9_5CrossRefGoogle Scholar
  25. Debroy, S., Calyam, P., Nguyen, M., et al., 2016. Frequencyminimal moving target defense using software-defined networking. Proc. Int. Conf. on Computing, Networking and Communications, p.1–6.  https://doi.org/10.1109/ICCNC.2016.7440635Google Scholar
  26. Dunlop, M., Groat, S., Urbanski, W., et al., 2011. MT6D: a moving target IPv6 defense. Proc. Military Communications Conf., p.1321–1326.  https://doi.org/10.1109/MILCOM.2011.6127486Google Scholar
  27. Eskridge, T.C., Carvalho, M.M., Stoner, E., et al., 2015. VINE: a cyber emulation environment for MTD experimentation. Proc. 2nd ACM Workshop on Moving Target Defense, p.43–47.  https://doi.org/10.1145/2808475.2808486CrossRefGoogle Scholar
  28. Evans, D., Nguyen-Tuong, A., Knight, J., 2011. Effectiveness of moving target defenses. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.29–48.  https://doi.org/10.1007/978-1-4614-0977-9_2CrossRefGoogle Scholar
  29. Gonzalez, C., 2013. From individual decisions from experience to behavioral game theory: lessons for cybersecurity. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.73–86.  https://doi.org/10.1007/978-1-4614-5416-8_4CrossRefGoogle Scholar
  30. Green, M., MacFarland, D.C., Smestad, D.R., et al., 2015. Characterizing network-based moving target defenses. Proc. 2nd ACM Workshop on Moving Target Defense, p.31–35.  https://doi.org/10.1145/2808475.2808484CrossRefGoogle Scholar
  31. Han, Y.J., Lu, W.L., Xu, S.H., 2014. Characterizing the power of moving target defense via cyber epidemic dynamics. Proc. Symp. and Bootcamp on the Science of Security, Article 10.  https://doi.org/10.1145/2600176.2600180Google Scholar
  32. Hobson, T., Okhravi, H., Bigelow, D., et al., 2014. On the challenges of effective movement. Proc. 1st ACM Workshop on Moving Target Defense, p.41–50.  https://doi.org/10.1145/2663474.2663480Google Scholar
  33. Hong, J.B., Kim, D.S., 2016. Assessing the effectiveness of moving target defenses using security models. IEEE Trans. Depend. Secur. Comput., 13(2):163–177.  https://doi.org/10.1109/TDSC.2015.2443790MathSciNetCrossRefGoogle Scholar
  34. Huang, Y., Ghosh, A.K., 2011. Introducing diversity and uncertainty to create moving attack surfaces for web services. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.131–151.  https://doi.org/10.1007/978-1-4614-0977-9_8CrossRefGoogle Scholar
  35. Jackson, T., Salamat, B., Homescu, A., et al., 2011. Compiler-generated software diversity. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.77–98.  https://doi.org/10.1007/978-1-4614-0977-9_4CrossRefGoogle Scholar
  36. Jackson, T., Homescu, A., Crane, S., et al., 2013. Diversifying the software stack using randomized NOP insertion. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.151–173.  https://doi.org/10.1007/978-1-4614-5416-8_8CrossRefGoogle Scholar
  37. Jafarian, J.H., Al-Shaer, E., Duan, Q., 2012. OpenFlow random host mutation: transparent moving target defense using software defined networking. Proc. 1st Workshop on Hot Topics in Software Defined Networks, p.127–132.  https://doi.org/10.1145/2342441.2342467CrossRefGoogle Scholar
  38. Jafarian, J.H., Al-Shaer, E., Duan, Q., 2014. Spatio-temporal address mutation for proactive cyber agility against sophisticated attackers. Proc. 1st ACM Workshop on Moving Target Defense, p.69–78.  https://doi.org/10.1145/2663474.2663483Google Scholar
  39. Jain, M., An, B., Tambe, M., 2013. Security games applied to real-world: research contributions and challenges. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.15–39.  https://doi.org/10.1007/978-1-4614-5416-8_2CrossRefGoogle Scholar
  40. Jajodia, S., Ghosh, A.K., Swarup, V., et al., 2011. Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA.CrossRefGoogle Scholar
  41. Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al., 2013. Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA.CrossRefGoogle Scholar
  42. Jangda, A., Mishra, M., de Sutter, B., 2015. Adaptive justin-time code diversification. Proc. 2nd ACM Workshop on Moving Target Defense, p.49–53.  https://doi.org/10.1145/2808475.2808487CrossRefGoogle Scholar
  43. Jia, Q., Sun, K., Stavrou, A., 2013. MOTAG: moving target defense against Internet denial of service attacks. Proc. 22nd Int. Conf. on Computer Communication and Networks, p.1–9.  https://doi.org/10.1109/ICCCN.2013.6614155Google Scholar
  44. John, D.J., Smith, R.W., Turkett, W.H., et al., 2014. Evolutionary based moving target cyber defense. Proc. Annual Conf. on Genetic and Evolutionary Computation, p.1261–1268.  https://doi.org/10.1145/2598394.2605437Google Scholar
  45. Kampanakis, P., Perros, H., Beyene, T., 2014. SDN-based solutions for moving target defense network protection. Proc. 15th Int. Symp. on a World of Wireless, Mobile and Multimedia Networks, p.1–6.  https://doi.org/10.1109/WoWMoM.2014.6918979Google Scholar
  46. le Goues, C., Nguyen-Tuong, A., Chen, H., et al., 2013. Moving target defenses in the helix self-regenerative architecture. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.117–149.  https://doi.org/10.1007/978-1-4614-5416-8_7CrossRefGoogle Scholar
  47. Liu, C.M., Zhang, Y., Chen, R., 2011. Research on dynamic model for network security based on artificial immunity. Int. J. Knowl. Lang. Process., 2(3):21–35.Google Scholar
  48. Liu, Y.J., Peng, W., Su, J.S., 2014. A study of IP prefix hijacking in cloud computing networks. Secur. Commun. Netw., 7(11):2201–2210.  https://doi.org/10.1002/sec.738CrossRefGoogle Scholar
  49. Lu, Z., Marvel, L., Wang, C., 2015. To be proactive or not: a framework to model cyber maneuvers for critical path protection in MANETs. Proc. 2nd ACM Workshop on Moving Target Defense, p.85–93.  https://doi.org/10.1145/2808475.2808479CrossRefGoogle Scholar
  50. Lucas, B., Fulp, E.W., John, D.J., et al., 2014. An initial framework for evolving computer configurations as a moving target defense. Proc. 9th Annual Cyber and Information Security Research Conf., p.69–72.  https://doi.org/10.1145/2602087.2602100Google Scholar
  51. Luo, Y.B., Wang, B.S., Cai, G.L., 2014. Effectiveness of port hopping as a moving target defense. Proc. 7th Int. Conf. on Security Technology, p.7–10.  https://doi.org/10.1109/SecTech.2014.9Google Scholar
  52. Luo, Y.B., Wang, B.S., Wang, X.F., et al., 2015. RPAH: random port and address hopping for thwarting internal and external adversaries. Proc. IEEE Trustcom/BigDataSE/ISPA, p.263–270.  https://doi.org/10.1109/Trustcom.2015.383Google Scholar
  53. MacFarland, D.C., Shue, C.A., 2015. The SDN shuffle: creating a moving-target defense using host-based softwaredefined networking. Proc. 2nd ACM Workshop on Moving Target Defense, p.37–41.  https://doi.org/10.1145/2808475.2808485CrossRefGoogle Scholar
  54. Manadhata, P.K., 2013. Game theoretic approaches to attack surface shifting. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.1–13.  https://doi.org/10.1007/978-1-4614-5416-8_1CrossRefGoogle Scholar
  55. Manadhata, P.K., Wing, J.M., 2011a. An attack surface metric. IEEE Trans. Softw. Eng., 37(3):371–386.  https://doi.org/10.1109/TSE.2010.60CrossRefGoogle Scholar
  56. Manadhata, P.K., Wing, J.M., 2011b. A formal model for a system’s attack surface. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.1–28.  https://doi.org/10.1007/978-1-4614-0977-9_1CrossRefGoogle Scholar
  57. Moody, W.C., Hu, H., Apon, A., 2014. Defensive maneuver cyber platform modeling with stochastic Petri nets. Proc. Int. Conf. on Collaborative Computing: Networking, Applications and Worksharing, p.531–538.Google Scholar
  58. Murphy, M., Larsen, P., Brunthaler, S., et al., 2014. Software profiling options and their effects on security based diversification. Proc. 1st ACM Workshop on Moving Target Defense, p.87–96.  https://doi.org/10.1145/2663474.2663485Google Scholar
  59. NITRD, 2009. National Cyber Leap Year Summit 2009 Co-chairs’ Report. Available from https://www.nitrd.gov/nitrdgroups/index.php?title=Category:National_Cyber_Leap_Year_Summit_2009 [Accessed on Jan. 1, 2014].Google Scholar
  60. NITRD, 2010. Cybersecurity Game-Change Research & Development Recommendations. Available from http://www.nitrd.gov/pubs/CSIA_IWG_%20Cybersecurity_%20GameChange_RD_%20Recommendations_20100513.pdf [Accessed on Aug. 20, 2013].Google Scholar
  61. Oehmen, C., Peterson, E., Teuton, J., 2013. Evolutionary drift models for moving target defense. Proc. 8th Annual Cyber Security and Information Intelligence Research Workshop, Article 37.  https://doi.org/10.1145/2459976.2460018Google Scholar
  62. Okhravi, H., Comella, A., Robinson, E., et al., 2011a. Creating a cyber moving target for critical infrastructure applications. In: Butts, J., Shenoi, S. (Eds.), Critical Infrastructure Protection V. Springer Berlin Heidelberg, Germany, p.107–123.  https://doi.org/10.1007/978-3-642-24864-1_8CrossRefGoogle Scholar
  63. Okhravi, H., Haines, J.W., Ingols, K., 2011b. Achieving cyber survivability in a contested environment using a cyber moving target. High Front. J., 7(3):9–13.Google Scholar
  64. Okhravi, H., Comella, A., Robinson, E., et al., 2012. Creating a cyber moving target for critical infrastructure applications using platform diversity. Int. J. Crit. Infrast. Protect., 5(1):30–39.  https://doi.org/10.1016/j.ijcip.2012.01.002CrossRefGoogle Scholar
  65. Okhravi, H., Rabe, M.A., Mayberry, T.J., et al., 2013. Survey of Cyber Moving Targets. Technical Report, No. MIT/LL-TR-1166. Lincoln Laboratory, Massachusetts Institute of Technology, USA.Google Scholar
  66. Okhravi, H., Hobson, T., Bigelow, D., et al., 2014a. Finding focus in the blur of moving-target techniques. IEEE Sec. Priv., 12(2):16–26.  https://doi.org/10.1109/MSP.2013.137CrossRefGoogle Scholar
  67. Okhravi, H., Riordan, J., Carter, K., 2014b. Quantitative evaluation of dynamic platform techniques as a defensive mechanism. In: Stavrou, A., Bos, H., Portokalidis, G. (Eds.), Research in Attacks, Intrusions and Defenses. Springer International Publishing, Switzerland, p.405–425.  https://doi.org/10.1007/978-3-319-11379-1_20Google Scholar
  68. Pappas, V., Polychronakis, M., Keromytis, A.D., 2013. Practical software diversification using in-place code randomization. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.175–202.  https://doi.org/10.1007/978-1-4614-5416-8_9CrossRefGoogle Scholar
  69. Peng, W., Li, F., Huang, C.T., et al., 2014. A moving-target defense strategy for cloud-based services with heterogeneous and dynamic attack surfaces. Proc. IEEE Int. Conf. on Communications, p.804–809.  https://doi.org/10.1109/ICC.2014.6883418Google Scholar
  70. Prakash, A., Wellman, M.P., 2015. Empirical game-theoretic analysis for moving target defense. Proc. 2nd ACM Workshop on Moving Target Defense, p.57–65.  https://doi.org/10.1145/2808475.2808483CrossRefGoogle Scholar
  71. Rahman, M.A., Al-Shaer, E., Bobba, R.B., 2014. Moving target defense for hardening the security of the power system state estimation. Proc. 1st ACM Workshop on Moving Target Defense, p.59–68.  https://doi.org/10.1145/2663474.2663482Google Scholar
  72. Rinard, M., 2011. Manipulating program functionality to eliminate security vulnerabilities. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.109–115.  https://doi.org/10.1007/978-1-4614-0977-9_6CrossRefGoogle Scholar
  73. Roeder, T., Schneider, F.B., 2010. Proactive obfuscation. ACM Trans. Comput. Syst., 28(2):Article 4.  https://doi.org/10.1145/1813654.1813655Google Scholar
  74. Sandoval, J.E., Hassell, S.P., 2010. Measurement, identification and calculation of cyber defense metrics. Proc. Military Communications Conf., p.2174–2179.  https://doi.org/10.1109/MILCOM.2010.5680489Google Scholar
  75. Taguinod, M., Doupé, A., Zhao, Z., et al., 2015. Toward a moving target defense for web applications. Proc. IEEE Int. Conf. on Information Reuse and Integration, p.510–517.  https://doi.org/10.1109/IRI.2015.84Google Scholar
  76. Thompson, M., Evans, N., Kisekka, V., 2014. Multiple OS rotational environment an implemented moving target defense. Proc. 7th Int. Symp. on Resilient Control Systems, p.1–6.  https://doi.org/10.1109/ISRCS.2014.6900086Google Scholar
  77. Torrieri, D., Zhu, S.C., Jajodia, S., 2013. Cyber maneuver against external adversaries and compromised nodes. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.87–96.  https://doi.org/10.1007/978-1-4614-5416-8_5CrossRefGoogle Scholar
  78. van Leeuwen, B., Stout, W.M.S., Urias, V., 2015. Operational cost of deploying Moving Target Defenses defensive work factors. Proc. Military Communications Conf., p.966–971.  https://doi.org/10.1109/MILCOM.2015.7357570Google Scholar
  79. Vikram, S., Yang, C., Gu, G., 2013. NOMAD: towards nonintrusive moving-target defense against web bots. Proc. IEEE Conf. on Communications and Network Security, p.55–63.  https://doi.org/10.1109/CNS.2013.6682692Google Scholar
  80. Wang, T.Z., Wang, H.M., Liu, B., et al., 2012. Further analyzing the sybil attack in mitigating peer-to-peer botnets. KSII Trans. Internet Inform. Syst., 6(10):2731–2749.Google Scholar
  81. Xu, J., Guo, P.Y., Zhao, M.Y., et al., 2014. Comparing different moving target defense techniques. Proc. 1st ACM Workshop on Moving Target Defense, p.97–107.  https://doi.org/10.1145/2663474.2663486Google Scholar
  82. Yackoski, J., Xie, P., Bullen, H., et al., 2011. A selfshielding dynamic network architecture. Proc. Military Communications Conf., p.1381–1386.  https://doi.org/10.1109/MILCOM.2011.6127498Google Scholar
  83. Yackoski, J., Bullen, H., Yu, X., et al., 2013a. Applying self-shielding dynamics to the network architecture. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.97–115.  https://doi.org/10.1007/978-1-4614-5416-8_6CrossRefGoogle Scholar
  84. Yackoski, J., Li, J., DeLoach, S.A., et al., 2013b. Missionoriented moving target defense based on cryptographically strong network dynamics. Proc. 8th Annual Cyber Security and Information Intelligence Research Workshop, Article 57.  https://doi.org/10.1145/2459976.2460040Google Scholar
  85. Zaffarano, K., Taylor, J., Hamilton, S., 2015. A quantitative framework for moving target defense effectiveness evaluation. Proc. 2nd ACM Workshop on Moving Target Defense, p.3–10.  https://doi.org/10.1145/2808475.2808476CrossRefGoogle Scholar
  86. Zhang, J., Hu, H.P., Liu, B., 2011. Robustness of RED in mitigating LDoS attack. KSII Trans. Internet Inform. Syst., 5(5):1085–1100.  https://doi.org/10.3837/tiis.2011.05.012CrossRefGoogle Scholar
  87. Zhang, M., Wang, L., Jajodia, S., et al., 2016. Network diversity: a security metric for evaluating the resilience of networks against zero-day attacks. IEEE Trans. Inform. Foren. Sec., 11(5):1071–1086.  https://doi.org/10.1109/TIFS.2016.2516916CrossRefGoogle Scholar
  88. Zhu, M.H., Hu, Z.S., Liu, P., 2014. Reinforcement learning algorithms for adaptive cyber defense against Heartbleed. Proc. 1st ACM Workshop on Moving Target Defense, p.51–58.  https://doi.org/10.1145/2663474.2663481Google Scholar
  89. Zhu, Q.Y., Başar, T., 2013. Game-theoretic approach to feedback-driven multi-stage moving target defense. Proc. 4th Int. Conf. on Decision and Game Theory for Security, p.246–263.  https://doi.org/10.1007/978-3-319-02786-9_15CrossRefGoogle Scholar
  90. Zhuang, R., Zhang, S., DeLoach, S.A., et al., 2012. Simulation-based approaches to studying effectiveness of moving-target network defense. Proc. National Symp. on Moving Target Research, p.1–12.Google Scholar
  91. Zhuang, R., Zhang, S., Bardas, A., et al., 2013. Investigating the application of moving target defenses to network security. Proc. 6th Int. Symp. on Resilient Control Systems, p.162–169.  https://doi.org/10.1109/ISRCS.2013.6623770Google Scholar
  92. Zhuang, R., DeLoach, S.A., Ou, X.M., 2014a. A model for analyzing the effect of moving target defenses on enterprise networks. Proc. 9th Annual Cyber and Information Security Research Conf., p.73–76.  https://doi.org/10.1145/2602087.2602088Google Scholar
  93. Zhuang, R., DeLoach, S.A, Ou, X.M., 2014b. Towards a theory of moving target defense. Proc. 1st ACM Workshop on Moving Target Defense, p.31–40.  https://doi.org/10.1145/2663474.2663479Google Scholar
  94. Zhuang, R., Bardas, A.G., DeLoach, S.A., et al., 2015. A theory of cyber attacks: a step towards analyzing MTD systems. Proc. 2nd ACM Workshop on Moving Target Defense, p.11–20.  https://doi.org/10.1145/2808475.2808478CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gui-lin Cai
    • 1
  • Bao-sheng Wang
    • 1
  • Wei Hu
    • 1
  • Tian-zuo Wang
    • 1
  1. 1.College of ComputerNational University of Defense TechnologyChangshaChina

Personalised recommendations