Ultra-wideband FMCW ISAR imaging with a large rotation angle based on block-sparse recovery

  • Ke Jin
  • Tao Lai
  • Gong-quan Li
  • Ting Wang
  • Yong-jun Zhao
Article

Abstract

Ultra-wideband frequency modulated continuous wave (FMCW) radar has the ability to achieve high-range resolution. Combined with the inverse synthetic aperture technique, high azimuth resolution can be realized under a large rotation angle. However, the range-azimuth coupling problem seriously restricts the inverse synthetic aperture radar (ISAR) imaging performance. Based on the turntable model, traditional match-filter-based, range Doppler algorithms (RDAs) and the back projection algorithm (BPA) are investigated. To eliminate the sidelobe effects of traditional algorithms, compressed sensing (CS) is preferred. Considering the block structure of a signal at high resolution, a block-sparsity adaptive matching pursuit algorithm (BSAMP) is proposed. By matching pursuit and backtracking, a signal with unknown sparsity can be recovered accurately by updating the support set iteratively. Finally, several experiments are conducted. In comparison with other algorithms, the results from processing the simulation data, some simple targets, and a complex target indicate the effectiveness and superiority of the proposed algorithm.

Key words

Frequency modulated continuous wave (FMCW) Inverse synthetic aperture radar (ISAR) Match-filter-based algorithm Compressed sensing Block sparsity 

CLC number

TN4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anghel, A., Vasile, G., Cacoveanu, R., et al., 2014. Shortrange wideband FMCW radar for millimetric displacement measurements. IEEE Trans. Geosci. Remote Sens., 52(9):5633–5642. https://doi.org/10.1109/TGRS.2013.2291573CrossRefGoogle Scholar
  2. Anghel, A., Vasile, G., Cacoveanu, R., et al., 2015. Range autofocusing for FMCW radars using time warping and a spectral concentration measure. IEEE Radar Conf., p.581–586. https://doi.org/10.1109/RADAR.2015.7131065Google Scholar
  3. Do, T.T., Gan, L., Nguyen, N., et al., 2008. Sparsity adaptive matching pursuit algorithm for practical compressed sensing. 42nd Asilomar Conf. on Signals, p.581–587. https://doi.org/10.1109/ACSSC.2008.5074472Google Scholar
  4. Eldar, Y.C., Kuppinger, P., Bolcskei, H., 2010. Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process., 58(6):3042–3054. https://doi.org/10.1109/TSP.2010.2044837MathSciNetCrossRefGoogle Scholar
  5. Elhamifar, E., Vidal, R., 2012. Block-sparse recovery via convex optimization. IEEE Trans. Signal Process., 60(8):4094–4107. https://doi.org/10.1109/TSP.2012.2196694MathSciNetCrossRefGoogle Scholar
  6. Fu, Y.W., Li, Y.N., Li, X., 2012. A 3D InISAR imaging method for non-uniformly rotating target based on match. Four. Transf. J. Astron., 33(6):769–775 (in Chinese). https://doi.org/10.3873/j.issn.1000-1328.2012.06.012Google Scholar
  7. Herman, M.A., Strohmer, T., 2009. High-resolution radar via compressed sensing. IEEE Trans. Signal Process., 57(6):2275–2284. https://doi.org/10.1109/TSP.2009.2014277MathSciNetCrossRefGoogle Scholar
  8. Hu, J.M., Jiang, W.D., Fu, Y.W., et al., 2010. A novel range alignment algorithm for ISAR. IEEE 2nd Int. Conf. on Computer Engineering and Technology, p.358–362. https://doi.org/10.1109/ICCET.2010.5486064Google Scholar
  9. Kim, K.T., Seo, D.K., Kim, H.T., 2005. Efficient classification of ISAR images. IEEE Trans. Antennas Propag., 53(5):1611–1621. https://doi.org/10.1109/TAP.2005.846780CrossRefGoogle Scholar
  10. Li, G., Zhang, H., Wang, X.Q., et al., 2012. ISAR 2D imaging of uniformly rotating targets via matching pursuit. IEEE Trans. Aerosp. Electron. Syst., 48(2):1838–1846. https://doi.org/10.1109/TAES.2012.6178106CrossRefGoogle Scholar
  11. Li, S.J., Qi, H.R., 2014a. Compressed dictionary learning for detecting activations in fMRI using double sparsity. IEEE Global Conf. on Signal and Information Processing, p.434–437. https://doi.org/10.1109/GlobalSIP.2014.7032154Google Scholar
  12. Li, S.J., Qi, H.R., 2014b. Recursive low-rank and sparse recovery of surveillance video using compressed sensing. Proc Int. Conf. on Distributed Smart Cameras, Article 1. https://doi.org/10.1145/2659021.2659029Google Scholar
  13. Li, S.J., Qi, H.R., 2015. A Douglas-Rachford splitting approach to compressed sensing image recovery using lowrank regularization. IEEE Trans. Image Process., 24(11):4240–4249. https://doi.org/10.1109/TIP.2015.2459653MathSciNetCrossRefGoogle Scholar
  14. Lu, G.Y., Bao, Z., 1999. Analysis of MTRC compensation algorithm in ISAR. IEEE Radar Conf., p.242–245. https://doi.org/10.1109/NRC.1999.767330Google Scholar
  15. Martorella, M., Berizzi, F., Haywood, B., 2005. Contrast maximisation based technique for 2D ISAR autofocusing. IEE Proc. Radar Son. Navig., 152(4):253–262. https://doi.org/10.1049/ip-rsn:20045123CrossRefGoogle Scholar
  16. Meta, A., Hoogeboom, P., Ligthart, L.P., 2007. Signal processing for FMCW SAR. IEEE Trans. Geosci. Remote Sens., 45(11):3519–3532. https://doi.org/10.1109/TGRS.2007.906140CrossRefGoogle Scholar
  17. Middleton, R.J.C., Macfarlane, D.G., Robertson, D.A., 2011. Range autofocus for linearly frequency-modulated continuous wave radar. IET Radar Sonar Navig., 5(3):288–295. https://doi.org/10.1049/iet-rsn.2010.0097CrossRefGoogle Scholar
  18. Özdemir, C., 2012. Inverse synthetic aperture radar imaging with MATLAB algorithms. John Wiley & Sons, Hoboken, New Jersey, America. https://doi.org/10.1002/9781118178072CrossRefGoogle Scholar
  19. Qiu, X.H., Zhao, Y., 2006. A non-parametric rotating angle acquisition method for optimal ISAR imaging. IEEE Antennas and Propagation Society Int. Symp., p.2697–2700. https://doi.org/10.1109/APS.2006.1711159Google Scholar
  20. Ribalta, A., 2011. Time-domain reconstruction algorithms for FMCW-SAR. IEEE Geosci. Remote Sens. Lett., 8(3):396–400. https://doi.org/10.1109/LGRS.2010.2078486CrossRefGoogle Scholar
  21. Wang, H.X., Liang, Y., Xing, M.D., et al., 2011. ISAR imaging via sparse frequency-stepped chirp signal. Sci. China Inform., 55(4):877–888. https://doi.org/10.1007/s11432-011-4353-1MathSciNetCrossRefGoogle Scholar
  22. Wang, R., Loffeld, O., Nies, H., et al., 2010. Focus FMCW SAR data using the wavenumber domain algorithm. IEEE Trans. Geosci. Remote Sens., 48(4):2109–2118. https://doi.org/10.1109/TGRS.2009.2034368CrossRefGoogle Scholar
  23. Wang, S.L., Li, S.G., Ni, J.L., et al., 2001. A new transformmatch Fourier transform. Acta Electron. Sin., 29(3):403–405 (in Chinese). https://doi.org/10.3321/j.issn:0372-2112.2001.03.030Google Scholar
  24. Wang, W.W., Liao, G.S., Zhang, L., et al., 2012. An imaging method based on compressive sensing for sparse aperture of SAR. Acta Electron. Sin., 40(12):2487–2494 (in Chinese). https://doi.org/10.3969/j.issn.0372-2112.2012.12.021Google Scholar
  25. Xing, M.D., Wu, R.B., Lan, J.Q., et al., 2004. Migration through resolution cell compensation in ISAR imaging. IEEE Geosci. Remote Sens. Lett., 1(2):141–144. https://doi.org/10.1109/LGRS.2004.824766CrossRefGoogle Scholar
  26. Zhang, S.S., Xiao, B., Zong, Z.L., 2014. Improved compressed sensing for high-resolution ISAR image reconstruction. Chin. Sci. Bull., 59(23):2918–2926. https://doi.org/10.1007/s11434-014-0470-8CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Zhengzhou Institute of Information Science and TechnologyZhengzhouChina

Personalised recommendations