Advertisement

A chaotic coverage path planner for the mobile robot based on the Chebyshev map for special missions

  • Cai-hong Li
  • Yong Song
  • Feng-ying Wang
  • Zhi-qiang Wang
  • Yi-bin Li
Article
  • 59 Downloads

Abstract

We introduce a novel strategy of designing a chaotic coverage path planner for the mobile robot based on the Chebyshev map for achieving special missions. The designed chaotic path planner consists of a two-dimensional Chebyshev map which is constructed by two one-dimensional Chebyshev maps. The performance of the time sequences which are generated by the planner is improved by arcsine transformation to enhance the chaotic characteristics and uniform distribution. Then the coverage rate and randomness for achieving the special missions of the robot are enhanced. The chaotic Chebyshev system is mapped into the feasible region of the robot workplace by affine transformation. Then a universal algorithm of coverage path planning is designed for environments with obstacles. Simulation results show that the constructed chaotic path planner can avoid detection of the obstacles and the workplace boundaries, and runs safely in the feasible areas. The designed strategy is able to satisfy the requirements of randomness, coverage, and high efficiency for special missions.

Key words

Mobile robot Chebyshev map Chaotic Affine transformation Coverage path planning 

CLC number

TP242.6 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Curiac, D.I., Volosencu, C., 2012. Chaotic trajectory design for monitoring an arbitrary number of specified locations using points of interest. Math. Probl. Eng., 2012: 940276.1–940276.18. https://doi.org/10.1155/2012/940276MathSciNetCrossRefzbMATHGoogle Scholar
  2. Curiac, D.I., Volosencu, C., 2014. A 2D chaotic path planning for mobile robots accomplishing boundary surveillance missions in adversarial conditions. Commun. Nonl. Sci. Numer. Simul., 19(10):3617–3627. https://doi.org/10.1016/j.cnsns.2014.03.020MathSciNetCrossRefGoogle Scholar
  3. Curiac, D.I., Volosencu, C., 2015. Path planning algorithm based on Arnold cat map for surveillance UAVs. Defen. Sci. J., 65(6):483–488. https://doi.org/10.14429/dsj.65.8483CrossRefGoogle Scholar
  4. Fallahi, K., Leung, H., 2010. A cooperative mobile robot task assignment and coverage planning based on chaos synchronization. Int. J. Bifurc. Chaos, 20(1):161–176. https://doi.org/10.1142/S021812741002548XMathSciNetCrossRefzbMATHGoogle Scholar
  5. Galceran, E., Carreras, M., 2013a. Planning coverage paths on bathymetric maps for in-detail inspection of the ocean floor. Proc. IEEE Int. Conf. on Robotics and Automation, p.4159–4164. https://doi.org/10.1109/ICRA.2013.6631164Google Scholar
  6. Galceran, E., Carreras, M., 2013b. A survey on coverage path planning for robotics. Robot. Auton. Syst., 61(12):1258–1276. https://doi.org/10.1016/j.robot.2013.09.004CrossRefGoogle Scholar
  7. Gan, H.P., Li, Z., Li, J., et al., 2014. Compressive sensing using chaotic sequence based on Chebyshev map. Nonl. Dynam., 78(4):2429–2438. https://doi.org/10.1007/s11071-014-1600-1MathSciNetCrossRefzbMATHGoogle Scholar
  8. Hwang, K.S., Lin, J.L., Huang, H.L., 2011. Dynamic patrol planning in a cooperative multi-robot system. Proc. 14th FIRA RoboWorld Congress, p.116–123. https://doi.org/10.1007/978-3-642-23147-6_14Google Scholar
  9. Li, C.H., Wang, F.Y., Zhao, L., et al., 2013. An improved chaotic motion path planner for autonomous mobile robots based on logistic map. Int. J. Adv. Robot. Syst., 10:1–9. https://doi.org/10.5772/56587CrossRefGoogle Scholar
  10. Li, C.H., Song, Y., Wang, F.Y., et al., 2015. Chaotic path planner of autonomous mobile robots based on the standard map for surveillance missions. Math. Probl. Eng., 2015:263964.1–263964.11. https://doi.org/10.1155/2015/263964Google Scholar
  11. Liu, S.C., Song, Y.X., Yu, R.H., 2013. The application of oversampled Chebyshev chaotic sequences in voice communication encryption. Adv. Mater. Res., 655-657: 1745–1749. https://doi.org/10.4028/www.scientific.net/ AMR.655-657.1745CrossRefGoogle Scholar
  12. Lorenz, E.N., 1995. The Essence of Chaos. CRC Press.zbMATHGoogle Scholar
  13. Martins-Filho, L.S., Macau, E.E.N., 2007. Patrol mobile robots and chaotic trajectories. Math. Probl. Eng., 2007: 61543.1–61543.13. https://doi.org/10.1155/2007/61543MathSciNetCrossRefzbMATHGoogle Scholar
  14. Nakamura, Y., Sekiguchi, A., 2001. The chaotic mobile robot. IEEE Trans. Robot. Autom., 17(6):898–904. https://doi.org/10.1109/70.976022CrossRefGoogle Scholar
  15. Oksanen, T., Visala, A., 2009. Coverage path planning algorithms for agricultural field machines. J. Field Robot., 26(8):651–668. https://doi.org/10.1002/rob.20300CrossRefzbMATHGoogle Scholar
  16. Ousingsawat, J., Earl, M.G., 2007. Modified lawn-mower search pattern for areas comprised of weighted regions. Proc. American Control Conf., p.918–923. https://doi.org/10.1109/ACC.2007.4282850Google Scholar
  17. Park, E., Kim, K.J., del Pobil, A.P., 2012. Energy efficient complete coverage path planning for vacuum cleaning robots. In: Park, J., Leung, V., Wang, C.L., et al. (Eds.), Future Information Technology, Application, and Service, p.23–31. https://doi.org/10.1007/978-94-007-4516-2_3Google Scholar
  18. Prado, J., Marques, L., 2013. Energy efficient area coverage for an autonomous demining robot. Proc. 1st Iberian Robotics Conf., p.459–471. https://doi.org/10.1007/978-3-319-03653-3_34Google Scholar
  19. Sooraksa, P., Klomkarn, K., 2010. “No-CPU” chaotic robots: from classroom to commerce. IEEE Circ. Syst. Mag., 10(1):46–53. https://doi.org/10.1109/MCAS.2010.935740CrossRefGoogle Scholar
  20. Volos, C.K., Bardis, N.G., Kyprianidis, I.M., et al., 2012a. Implementation of mobile robot by using double-scroll chaotic attractors. Recent Researches in Applications of Electrical and Computer Engineering, p.119–124. http://www.wseas.us/e-library/conferences/2012/Vouliag meni/ACA/ACA-18.pdfGoogle Scholar
  21. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N., 2012b. A chaotic path planning generator for autonomous mobile robots. Robot. Auton. Syst., 60(4):651–656. https://doi.org/10.1016/j.robot.2012.01.001CrossRefGoogle Scholar
  22. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N., 2013. Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robot. Auton. Syst., 61(12):1314–1322. https://doi.org/10.1016/j.robot.2013.08.004CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyShandong University of TechnologyZiboChina
  2. 2.School of Mechanical, Electrical & Information EngineeringShandong UniversityWeihaiChina

Personalised recommendations