An efficient prediction framework for multi-parametric yield analysis under parameter variations

Article
  • 59 Downloads

Abstract

Due to continuous process scaling, process, voltage, and temperature (PVT) parameter variations have become one of the most problematic issues in circuit design. The resulting correlations among performance metrics lead to a significant parametric yield loss. Previous algorithms on parametric yield prediction are limited to predicting a single-parametric yield or performing balanced optimization for several single-parametric yields. Consequently, these methods fail to predict the multi-parametric yield that optimizes multiple performance metrics simultaneously, which may result in significant accuracy loss. In this paper we suggest an efficient multi-parametric yield prediction framework, in which multiple performance metrics are considered as simultaneous constraint conditions for parametric yield prediction, to maintain the correlations among metrics. First, the framework models the performance metrics in terms of PVT parameter variations by using the adaptive elastic net (AEN) method. Then the parametric yield for a single performance metric can be predicted through the computation of the cumulative distribution function (CDF) based on the multiplication theorem and the Markov chain Monte Carlo (MCMC) method. Finally, a copula-based parametric yield prediction procedure has been developed to solve the multi-parametric yield prediction problem, and to generate an accurate yield estimate. Experimental results demonstrate that the proposed multi-parametric yield prediction framework is able to provide the designer with either an accurate value for parametric yield under specific performance limits, or a multi-parametric yield surface under all ranges of performance limits.

Key words

Yield prediction Parameter variations Multi-parametric yield Performance modeling Sparse representation 

CLC number

TP312 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee, A., Chatterjee, A., 2015. Signature driven hierar-chical post-manufacture tuning of RF systems for per-formance and power. IEEE Trans. VLSI Syst., 23(2):342–355. http://dx.doi.org/10.1109/TVLSI.2014.2309114CrossRefGoogle Scholar
  2. Bayrakci, A.A., 2015. Stochastic logical effort as a variation aware delay model to estimate timing yield. Integr. VLSI J., 48(1):101–108. http://dx.doi.org/10.1016/j.vlsi.2014.07.003CrossRefGoogle Scholar
  3. Binois, M., Rullière, D., Roustant, O., 2015. On the estimation of Pareto fronts from the point of view of copula theory. Inform. Sci., 324:270–285. http://dx.doi.org/10.1016/j.ins.2015.06.037CrossRefGoogle Scholar
  4. Haghdad, K., Anis, M., 2012. Timing yield analysis consider-ing process-induced temperature and supply voltage variations. Microelectron. J., 43(12):956–961. http://dx.doi.org/10.1016/j.mejo.2012.07.014CrossRefGoogle Scholar
  5. Houda, M., Lisser, A., 2015. Archimedean copulas in joint chance-constrained programming. Commun. Comput. Inform. Sci., 509:126–139. http://dx.doi.org/10.1007/978-3-319-17509-6_9CrossRefGoogle Scholar
  6. Huang, B., Du, X., 2008. Probabilistic uncertainty analysis by mean-value first order Saddlepoint approximation. Reliab. Eng. Syst. Safety, 93(2):325–336. http://dx.doi.org/10.1016/j. ress.2006.10.021MathSciNetCrossRefGoogle Scholar
  7. Hwang, E.J., Kim, W., Kim, Y.H., 2013. Timing yield slack for timing yield-constrained optimization and its application to statistical leakage minimization. IEEE Trans. VLSI Syst., 21(10):1783–1796. http://dx.doi.org/10.1109/TVLSI.2012.2220792CrossRefGoogle Scholar
  8. Jin, Y.J., 2013. Reliability-based sensitivity analysis for ma-chining precision by saddle-point approximation. Appl. Mech. Mater., 241-244:280–283. http://dx.doi.org/10.4028/www.scientific.net/AMM.241-244.280CrossRefGoogle Scholar
  9. Kaneda, S., Mizumoto, T., Maeno, T., et al., 2015. A cross validation of network system models for delay tolerant networks. Int. Conf. on Mobile Computing and Ubiqui-tous Networking, p.185–190. http://dx.doi.org/10.1109/ICMU.2015.7061064Google Scholar
  10. Kao, S.C., Govindaraju, R.S., 2008. Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Res., 44(2):333–341. http://dx.doi.org/10.1029/2007WR006261CrossRefGoogle Scholar
  11. Kim, G., Silvapulle, M.J., Silvapulle, P., 2007. Comparison of semiparametric and parametric methods for estimating copulas. Comput. Statist. Data Anal., 51(6):2836–2850. http://dx.doi.org/10.1016/j.csda.2006.10.009MathSciNetCrossRefMATHGoogle Scholar
  12. Kondamadugula, S., Naidu, S.R., 2016. Parameter-importance based Monte-Carlo technique for variation-aware analog yield optimization. Proc. 26th edition on Great Lakes Symp. on VLSI, p.51–56. http://dx.doi.org/10.1145/2902961.2903018CrossRefGoogle Scholar
  13. Lan, W., Wang, H., Tsai, C., 2012. A Bayesian information criterion for portfolio selection. Comput. Statist. Data Anal., 56(1):88–99. http://dx.doi.org/10.1016/j.csda.2011.06.012MathSciNetCrossRefMATHGoogle Scholar
  14. Li, X., 2010. Finding deterministic solution from underdeter-mined equation: large-scale performance variability modeling of analog/RF circuits. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 29(11):1661–1668. http://dx.doi.org/10.1109/TCAD.2010.2061292CrossRefGoogle Scholar
  15. Li, X., Sun, J., Xiao, F., et al., 2016. An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations. Front. Inform. Technol. Electron. Eng., 17(2):160–172. http://dx.doi.org/10.1631/FITEE.1500168CrossRefGoogle Scholar
  16. Liu, X., Tan, S.X.D., Palma-Rodriguez, A.A., et al., 2013. Performance bound analysis of analog circuits in frequency-and time-domain considering process varia-tions. ACM Trans. Des. Autom. Electron. Syst., 19(1):6. http://dx.doi.org/10.1145/2534395CrossRefGoogle Scholar
  17. Mande, S.S., Chandorkar, A.N., Iwai, H., 2013. Computation-ally efficient methodology for statistical characterization and yield estimation due to inter-and intra-die process variations. Proc. 5th Asia Symp. on Quality Electronic Design, p.287–294. http://dx.doi.org/10.1109/ASQED.2013.6643602Google Scholar
  18. Nateghi, H., El-Sankary, K., 2015. A self-healing technique using ZTC biasing for PVT variations compensation in 65nm CMOS technology. Canadian Conf. on Electrical and Computer Engineering, p.128–131. http://dx.doi.org/10.1109/CCECE.2015.7129173Google Scholar
  19. Nelson, R.B., 2006. An Introduction to Copulas. Springer, New York. http://dx.doi.org/10.1007/0-387-28678-0Google Scholar
  20. Panchal, G., Ganatra, A., Kosta, Y.P., et al., 2010. Searching most efficient neural network architecture using Akaike’s information criterion (AIC). Int. J. Comput. Appl., 1(5):41–44. http://dx.doi.org/10.5120/126-242Google Scholar
  21. Radfar, M., Singh, J., 2014. A yield improvement technique in severe process, voltage, and temperature variations and extreme voltage scaling. Microelectron. Reliab., 54(12):2813–2823. http://dx.doi.org/10.1016/j.microrel.2014.07.138CrossRefGoogle Scholar
  22. Srivastava, A., Chopra, K., Shah, S., et al., 2008. A novel approach to perform gate-level yield analysis and opti-mization considering correlated variations in power and performance. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 27(2):272–285. http://dx.doi.org/10.1109/TCAD.2007.907227CrossRefGoogle Scholar
  23. Sun, J., Li, J., Ma, D., et al., 2008. Chebyshev affine-arithmetic-based parametric yield prediction under lim-ited descriptions of uncertainty. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 27(10):1852–1865. http://dx.doi.org/10.1109/TCAD.2008.2003300CrossRefGoogle Scholar
  24. Tang, A., Jha, N.K., 2016. GenFin: genetic algorithm-based multiobjective statistical logic circuit optimization using incremental statistical analysis. IEEE Trans. VLSI Syst., 24(3):1126–1139. http://dx.doi.org/10.1109/TVLSI.2015.2442260CrossRefGoogle Scholar
  25. Tlelo-Cuautle, E., Sanabria-Borbon, A.C., 2016. Optimising operational amplifiers by evolutionary algorithms and gm/Id method. Int. J. Electron., 103(10):1665–1684. http://dx.doi.org/10.1080/00207217.2016.1138522CrossRefGoogle Scholar
  26. Trejo-Guerra, R., Tlelo-Cuautle, E., Jiménez-Fuentes, J.M., et al., 2012. Integrated circuit generating 3-and 5-scroll attractors. Commun. Nonl. Sci. Numer. Simul., 17(11):4328–4335. http://dx.doi.org/10.1016/j.cnsns.2012.01.029MathSciNetCrossRefGoogle Scholar
  27. Visweswariah, C., 2003. Death, taxes and failing chips. Proc. 40th Annual Design Automation Conf., p.343–347. http://dx.doi.org/10.1145/775919.775921Google Scholar
  28. Wang, D., Hutson, A.D., 2015. Inversion theorem based kernel density estimation for the ordinary least squares estimator of a regression coefficient. Commun. Statist. Theory Methods, 44(8):1571–1579. http://dx.doi.org/10.1080/03610926.2013.781633MathSciNetCrossRefMATHGoogle Scholar
  29. Xu, F., Li, C., Jiang, T., 2015. Printed circuit board model updating based on response surface method. J. Beijing Univ. Aeronaut. Astronaut., 41(3):449–455 (in Chinese).Google Scholar
  30. Yuan, X., 2009. Application Research of Markov Chain Sim-ulation in Reliability Analysis. PhD Thesis, Northwestern Polytechnical University, Xi’an, China (in Chinese).Google Scholar
  31. Yuan, X.K., Lu, Z.Z., Qiao, H.W., 2010. Conditional proba-bility Markov chain simulation based reliability analysis method for nonnormal variables. Sci. China Technol. Sci., 53(5):1434–1441. http://dx.doi.org/10.1007/ s11431-010-0138-9MathSciNetCrossRefMATHGoogle Scholar
  32. Zhang, H., Zamar, R.H., 2014. Least angle regression for model selection. Wiley Interdiscipl. Rev. Comput. Statist., 6(2):116–123. http://dx.doi.org/10.1002/wics.1288CrossRefGoogle Scholar
  33. Zou, H., 2006. The adaptive Lasso and its Oracle properties. J. Am. Statist. Assoc., 101(476):1418–1429. http://dx.doi.org/10.1198/016214506000000735MathSciNetCrossRefMATHGoogle Scholar
  34. Zou, H., Zhang, H.H., 2009. On the adaptive elastic-net with a diverging number of parameters. Ann. Statist., 37(4):1733–1751. http://dx.doi.org/10.1214/08-AOS625MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Jiangsu High Technology Research Key Laboratory for Wireless Sensor NetworksNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.Technology Innovation CenterJiangsu Academy of Safety Science and TechnologyNanjingChina
  3. 3.School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations