Skip to main content
Log in

A space-saving steering method for underwater gliders in lake monitoring

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

An increasing number of underwater gliders have been applied to lake monitoring. Lakes have a limited vertical space. Therefore, good space-saving capacity is required for underwater gliders to enlarge the spacing between monitoring waypoints. This paper presents a space-saving steering method under a small pitch angle (SPA) for appearance-fixed underwater gliders. Steering under an SPA increases the steering angle in per unit vertical space. An amended hydrodynamic model for both small and large attack angles is presented to help analyze the steering process. Analysis is conducted to find the optimal parameters of net buoyancy and roll angle for steering under an SPA. A lake trial with a prototype tiny underwater glider (TUG) is conducted to inspect the applicability of the presented model. The trial results show that steering under an SPA saves vertical space, unlike that under a large pitch angle. Simulation results of steering are consistent with the trial results. In addition, multiple-waypoint trial shows that monitoring with steering under an SPA covers a larger horizontal displacement than that without steering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadzadeh, S.R., Kormushev, P., Caldwell, D.G., 2014. Multi-objective reinforcement learning for AUV thruster failure recovery. IEEE Symp. on Adaptive Dynamic Programming and Reinforcement Learning, p.1–8. http://dx.doi.org/10.1109/ADPRL.2014.7010621

    Google Scholar 

  • Austin, J., 2013a. Observations of near-inertial energy in Lake Superior. Limnol. Ocean., 58(2): 715–728. http://dx.doi.org/10.4319/lo.2013.58.2.0715

    Article  MathSciNet  Google Scholar 

  • Austin, J., 2013b. The potential for autonomous underwater gliders in large lake research. J. Great Lake Res., 39(Supplement 1):8–13. http://dx.doi.org/10.1016/j.jglr.2013.01.004

    Article  Google Scholar 

  • Bardyshev, V.I., 2004. Testing underwater bottom-moored antenna arrays in the sea and in a man-made lake. Acoust. Phys., 50(6): 641–646. http://dx.doi.org/10.1134/1.1825092

    Article  Google Scholar 

  • Caffaz, A., Caiti, A., Casalino, G., et al., 2010. The hybrid glider/AUV folaga. IEEE Robot. Autom. Mag., 17(1): 31–44. http://dx.doi.org/10.1109/MRA.2010.935791

    Article  Google Scholar 

  • Cao, J.J., Cao, J.L., Yao, B.H., et al., 2015. Three dimensional model, hydrodynamics analysis and motion simulation of an underwater glider. OCEANS, p.1–8. http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271365

    Google Scholar 

  • Chen, Y., Lu, C.J., Guo, J.H., 2010. Numerical study of the cavitating flows over underwater vehicle with large angle of attack. J. Hydrodyn., 22(5): 893–898. http://dx.doi.org/10.1016/S1001-6058(10)60048-0

    Article  Google Scholar 

  • Denkenberger, J.S., Driscoll, C.T., Effler, S.W., et al., 2007. Comparison of an urban lake targeted for rehabilitation and a reference lake based on robotic monitoring. Lake Reserv. Manag., 23(1): 11–26. http://dx.doi.org/10.1080/07438140709353906

    Article  Google Scholar 

  • Fan, S., Woolsey, C.A., 2014. Dynamics of underwater gliders in currents. Ocean Eng., 84: 249–258. http://dx.doi.org/10.1016/j.oceaneng.2014.03.024

    Article  Google Scholar 

  • Geisbert, J.S., 2005. Underwater Gliders: Dynamics, Control and Design. PhD Thesis, Princeton University, Princeton, USA.

    Google Scholar 

  • Geisbert, J.S., 2007. Hydrodynamic modeling for Autonomous Underwater Vehicles Using Computational and Semi-Empirical Methods. MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA.

    Google Scholar 

  • He, R., Wooller, M.J., Pohlman, J.W., et al., 2012. Diversity of active aerobic methanotrophs along depth profiles of Arctic and Subarctic lake water column and sediments. ISME J., 6(10): 1937–1948. http://dx.doi.org/10.1038/ismej.2012.34

    Article  Google Scholar 

  • Hussain, N.A.A., Arshad, M.R., Mohd-Mokhtar, R., 2011. Underwater glider modelling and analysis for net buoyancy, depth and pitch angle control. Ocean Eng., 38(16): 1782–1791. http://dx.doi.org/10.1016/j.oceaneng.2011.09.001

    Article  Google Scholar 

  • Isa, K., Arshad, M.R., 2011. Motion simulation for propellerdriven USM underwater glider with controllable wings and rudder. 2nd Int. Conf. on Instrumentation Control and Automation, p.316–321. http://dx.doi.org/10.1109/ICA.2011.6130179

    Google Scholar 

  • Isa, K., Arshad, M.R., Ishak, S., 2014. A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control. Ocean Eng., 81: 111–129. http://dx.doi.org/10.1016/j.oceaneng.2014.02.002

    Article  Google Scholar 

  • Ivanov, A.V., Gladkochub, D.P., Déverchère, J., et al., 2013. Introduction to special issue: geology of the Lake Baikal region. J. Asian Earth Sci., 62: 1–3. http://dx.doi.org/10.1016/j.jseaes.2012.12.010

    Article  Google Scholar 

  • Jones, C., Allsup, B., DeCollibus, C., 2014. Slocum glider: expanding our understanding of the oceans. OCEANS, p.1–10. http://dx.doi.org/10.1109/OCEANS.2014.7003260

    Google Scholar 

  • Leonard, N.E., Paley, D.A., Davis, R.E., et al., 2010. Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Rob., 27(6): 718–740. http://dx.doi.org/10.1002/rob.20366

    Article  Google Scholar 

  • Li, Y., Gal, G., Makler-Pick, V., et al., 2014. Examination of the role of the microbial loop in regulating lake nutrient stoichiometry and phytoplankton dynamics. Biogeosciences, 11(11): 2939–2960. http://dx.doi.org/10.5194/bg-11-2939-2014

    Article  Google Scholar 

  • Lim, D.S.S., Brady, A.L., Abercromby, A.F., et al., 2011. A historical overview of the pavilion lake research project— analog science and exploration in an underwater environment. GSA Spec. Papers, 483: 85–116. http://dx.doi.org/10.1130/2011.2483(07)

    Google Scholar 

  • Mahmoudian, N., Geisbert, J., Woolsey, C., 2010. Approximate analytical turning conditions for underwater gliders: implications for motion control and path planning. IEEE J. Ocean. Eng., 35(1): 131–143. http://dx.doi.org/10.1109/JOE.2009.2039655

    Article  Google Scholar 

  • Peng, S.L., Yang, C.J., Fan, S.S., et al., 2014. Hybrid underwater glider for underwater docking: modeling and performance evaluation. Mar. Technol. Soc. J., 48(6): 112–124. http://dx.doi.org/10.4031/MTSJ.48.6.5

    Article  Google Scholar 

  • Suberg, L., Wynn, R.B., van der Kooij, J., et al., 2014. Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas. J. Meth. Ocean., 10: 70–89. http://dx.doi.org/10.1016/j.mio.2014.06.002

    Article  Google Scholar 

  • Wang, C.T., Yu, J.C., Wu, L.H., et al., 2007. Research on movement mechanism simulation and experiment of underwater glider. Ocean Eng., 25(1): 64–69. http://dx.doi.org/10.16483/j.issn.1005-9865.2007.01.010

    Google Scholar 

  • Wang, L.F., Yang, L.Y., Kong, L.H., et al., 2014. Spatial distribution, source identification and pollution assessment of metal content in the surface sediments of Nansi Lake, China. J. Geochem. Exp., 140: 87–95. http://dx.doi.org/10.1016/j.gexplo.2014.02.008

    Article  Google Scholar 

  • Wang, Y.H., Zhang, H.W., Wang, S.X., 2009. Trajectory control strategies for the underwater glider. Int. Conf. on Measuring Technology and Mechatronics Automation, p.918–921. http://dx.doi.org/10.1109/ICMTMA.2009.617

    Google Scholar 

  • Weng, Y., Yang, H., He, J.Y., et al., 2015. Microstructure measurement form an underwater glider: motion analysis and experimental results. OCEANS, p.1–5. http://dx.doi.org/10.1109/OCEANS-Genova.2015.72714 88

    Google Scholar 

  • Yang, C.J., Peng, S.L., Fan, S.S., 2014. Performance and stability analysis for ZJU glider. Mar. Technol. Soc. J., 48(3): 88–103. http://dx.doi.org/10.4031/MTSJ.48.3.6

    Article  Google Scholar 

  • Zhang, F.T., Zhang, F.M., Tan, X.B., 2014. Tail-enabled spiraling maneuver for gliding robotic fish. J. Dynam. Syst. Meas. Contr., 136(4):041028. http://dx.doi.org/10.1115/1.4026965

    Article  Google Scholar 

  • Zhang, S.W., Yu, J.C., Zhang, A.Q., et al., 2013. Spiraling motion of underwater gliders: modeling, analysis, and experimental results. Ocean Eng., 60: 1–13. http://dx.doi.org/10.1016/j.oceaneng.2012.12.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can-jun Yang.

Additional information

Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51521064) and the National High-Tech R&D Program (863) of China (No. 2014AA09A513)

ORCID: Can-jun YANG, http://orcid.org/0000-0002-3712-0538

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Ys., Yang, Cj., Wu, Sj. et al. A space-saving steering method for underwater gliders in lake monitoring. Frontiers Inf Technol Electronic Eng 18, 485–497 (2017). https://doi.org/10.1631/FITEE.1500399

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500399

Key words

CLC number

Navigation