Skip to main content
Log in

Neuro-heuristic computational intelligence for solving nonlinear pantograph systems

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We present a neuro-heuristic computing platform for finding the solution for initial value problems (IVPs) of nonlinear pantograph systems based on functional differential equations (P-FDEs) of different orders. In this scheme, the strengths of feed-forward artificial neural networks (ANNs), the evolutionary computing technique mainly based on genetic algorithms (GAs), and the interior-point technique (IPT) are exploited. Two types of mathematical models of the systems are constructed with the help of ANNs by defining an unsupervised error with and without exactly satisfying the initial conditions. The design parameters of ANN models are optimized with a hybrid approach GA–IPT, where GA is used as a tool for effective global search, and IPT is incorporated for rapid local convergence. The proposed scheme is tested on three different types of IVPs of P-FDE with orders 1–3. The correctness of the scheme is established by comparison with the existing exact solutions. The accuracy and convergence of the proposed scheme are further validated through a large number of numerical experiments by taking different numbers of neurons in ANN models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, R.P., Chow, Y.M., 1986. Finite difference methods for boundary-value problems of differential equations with deviating arguments. Comput. Math. Appl., 12(11): 1143–1153. http://dx.doi.org/10.1016/0898-1221(86)90018-0

    Article  MathSciNet  MATH  Google Scholar 

  • Arqub, O.A., Zaer, A.H., 2014. Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inform. Sci., 279: 396–415. http://dx.doi.org/10.1016/j.ins.2014.03.128

    Article  MathSciNet  MATH  Google Scholar 

  • Azbelev, N.V., Maksimov, V.P., Rakhmatullina, L.F., 2007. Intoduction to the Theory of Functional Differential Equations: Methods and Applications. Hindawi Publishing Corporation, New York, USA. http://dx.doi.org/10.1155/9789775945495

    Book  MATH  Google Scholar 

  • Barro, G., So, O., Ntaganda, J.M., et al., 2008. A numerical method for some nonlinear differential equation models in biology. Appl. Math. Comput., 200(1): 28–33. http://dx.doi.org/10.1016/j.amc.2007.10.041

    MathSciNet  MATH  Google Scholar 

  • Chakraverty, S., Mall, S., 2014. Regression-based weight generation algorithm in neural network for solution of initial and boundary value problems. Neur. Comput. Appl., 25(3): 585–594. http://dx.doi.org/10.1007/s00521-013-1526-4

    Article  Google Scholar 

  • Dehghan, M., Salehi, R., 2010. Solution of a nonlinear time-delay model in biology via semi-analytical approaches. Comput. Phys. Commun., 181: 1255–1265. http://dx.doi.org/10.1016/j.cpc.2010.03.014

    Article  MathSciNet  MATH  Google Scholar 

  • Derfel, G., Iserles, A., 1997. The pantograph equation in the complex plane. J. Math. Anal. Appl., 213(1): 117–132. http://dx.doi.org/10.1006/jmaa.1997.5483

    Article  MathSciNet  MATH  Google Scholar 

  • Evans, D.J., Raslan, K.R., 2005. The Adomian decomposition method for solving delay differential equation. Int. J. Comput. Math., 82(1): 49–54. http://dx.doi.org/10.1080/00207160412331286815

    Article  MathSciNet  MATH  Google Scholar 

  • Holland, J.H., 1975. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The University of Michigan Press, Ann Arbor, USA.

    MATH  Google Scholar 

  • Iserles, A., 1993. On the generalized pantograph functionaldifferential equation. Eur. J. Appl. Math., 4(1): 1–38. http://dx.doi.org/10.1017/S0956792500000966

    Article  MATH  Google Scholar 

  • Khan, J.A., Raja, M.A.Z., Qureshi, I.M., 2011. Novel approach for van der Pol oscillator on the continuous time domain. Chin. Phys. Lett., 28:110205. http://dx.doi.org/10.1088/0256-307X/28/11/110205

    Article  Google Scholar 

  • Khan, J.A., Raja, M.A.Z., Syam, M.A., et al., 2015. Design and application of nature inspired computing approach for non-linear stiff oscillatory problems. Neur. Comput. Appl., 26(7): 1763–1780. http://dx.doi.org/10.1007/s00521-015-1841-z

    Article  Google Scholar 

  • Mall, S., Chakraverty, S., 2014a. Chebyshev neural network based model for solving Lane–Emden type equations. Appl. Math. Comput., 247: 100–114. http://dx.doi.org/10.1016/j.amc.2014.08.085

    MathSciNet  MATH  Google Scholar 

  • Mall, S., Chakraverty, S., 2014b. Numerical solution of nonlinear singular initial value problems of Emden–Fowler type using Chebyshev neural network method. Neurocomputing, 149(B):975–982. http://dx.doi.org/10.1016/j.neucom.2014.07.036

    Article  Google Scholar 

  • McFall, K.S., 2013. Automated design parameter selection for neural networks solving coupled partial differential equations with discontinuities. J. Franklin Inst., 350(2): 300–317. http://dx.doi.org/10.1016/j.jfranklin.2012.11.003

    Article  MathSciNet  MATH  Google Scholar 

  • Ockendon, J.R., Tayler, A.B., 1971. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. A, 322(1551): 447–468. http://dx.doi.org/10.1098/rspa.1971.0078

    Article  Google Scholar 

  • Pandit, S., Kumar, M., 2014. Haar wavelet approach for numerical solution of two parameters singularly perturbed boundary value problems. Appl. Math. Inform. Sci., 8(6): 2965–2974.

    Article  MathSciNet  Google Scholar 

  • Peng, Y.G., Jun, W., Wei, W., 2014. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(2): 139–146. http://dx.doi.org/10.1631/jzus.C1300182

    Article  Google Scholar 

  • Potra, F.A., Wright, S.J., 2000. Interior-point methods. J. Comput. Appl. Math., 124(1-2):281–302. http://dx.doi.org/10.1016/S0377-0427(00)00433-7

    Article  MathSciNet  MATH  Google Scholar 

  • Raja, M.A.Z., 2014a. Numerical treatment for boundary value problems of pantograph functional differential equation using computational intelligence algorithms. Appl. Soft Comput., 24: 806–821. http://dx.doi.org/10.1016/j.asoc.2014.08.055

    Article  Google Scholar 

  • Raja, M.A.Z., 2014b. Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect. Sci., 26(3): 195–214. http://dx.doi.org/10.1080/09540091.2014.907555

    Article  Google Scholar 

  • Raja, M.A.Z., 2014c. Stochastic numerical techniques for solving Troesch’s problem. Inform. Sci., 279: 860–873. http://dx.doi.org/10.1016/j.ins.2014.04.036

    Article  MathSciNet  MATH  Google Scholar 

  • Raja, M.A.Z., 2014d. Unsupervised neural networks for solving Troesch’s problem. Chin. Phys. B, 23(1):018903.

    Article  Google Scholar 

  • Raja, M.A.Z., Ahmad, S.I., 2014. Numerical treatment for solving one-dimensional Bratu problem using neural networks. Neur. Comput. Appl., 24(3): 549–561. http://dx.doi.org/10.1007/s00521-012-1261-2

    Article  Google Scholar 

  • Raja, M.A.Z., Samar, R., 2014a. Numerical treatment for nonlinear MHD Jeffery–Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing, 124: 178–193. http://dx.doi.org/10.1016/j.neucom.2013.07.013

    Article  Google Scholar 

  • Raja, M.A.Z., Samar, R., 2014b. Numerical treatment of nonlinear MHD Jeffery–Hamel problems using stochastic algorithms. Comput. Fluids, 91: 28–46. http://dx.doi.org/10.1016/j.compfluid.2013.12.005

    Article  MathSciNet  Google Scholar 

  • Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2010a. Evolutionary computational intelligence in solving the fractional differential equations. Asian Conf. on Intelligent Information and Database Systems, p.231–240. http://dx.doi.org/10.1007/978-3-642-12145-6_24

    Chapter  Google Scholar 

  • Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2010b. Heuristic computational approach using swarm intelligence in solving fractional differential equations. Proc. 12th Annual Conf. Companion on Genetic and Evolutionary Computation, p.2023–2026. http://dx.doi.org/10.1145/1830761.1830850

    Google Scholar 

  • Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2010c. A new stochastic approach for solution of Riccati differential equation of fractional order. Ann. Math. Artif. Intell., 60(3): 229–250. http://dx.doi.org/10.1007/s10472-010-9222-x

    Article  MathSciNet  MATH  Google Scholar 

  • Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2011a. Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence. Math. Prob. Eng., 2011:765075. http://dx.doi.org/10.1155/2011/675075

    Article  MathSciNet  MATH  Google Scholar 

  • Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2011b. Swarm intelligence optimized neural network for solving fractional order systems of Bagley-Tervik equation. Eng. Intell. Syst., 19(1): 41–51.

    Google Scholar 

  • Raja, M.A.Z., Khan, J.A., Ahmad, S.I., et al., 2012. A new stochastic technique for Painlevé equation-I using neural network optimized with swarm intelligence. Comput. Intell. Neur., 2012:721867. http://dx.doi.org/10.1155/2012/721867

    Google Scholar 

  • Raja, M.A.Z., Ahmad, S.I., Samar, R., 2013. Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem. Neur. Comput. Appl., 23(7): 2199–2210. http://dx.doi.org/10.1007/s00521-012-1170-4

    Article  Google Scholar 

  • Raja, M.A.Z., Samar, R., Rashidi, M.M., 2014a. Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neur. Comput. Appl., 25(7): 1585–1601. http://dx.doi.org/10.1007/s00521-014-1641-x

    Article  Google Scholar 

  • Raja, M.A.Z., Ahmad, S.I., Samar, R., 2014b. Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neur. Comput. Appl., 25(7): 1723–1739. http://dx.doi.org/10.1007/s00521-014-1664-3

    Article  Google Scholar 

  • Raja, M.A.Z., Khan, J.A., Shah, S.M., et al., 2015a. Comparison of three unsupervised neural network models for first Painlevé transcendent. Neur. Comput. Appl., 26(5): 1055–1071. http://dx.doi.org/10.1007/s00521-014-1774-y

    Article  Google Scholar 

  • Raja, M.A.Z., Sabir, Z., Mahmood, N., et al., 2015b. Design of stochastic solvers based on genetic algorithms for solving nonlinear equations. Neur. Comput. Appl., 26(1): 1–23. http://dx.doi.org/10.1007/s00521-014-1676-z

    Article  Google Scholar 

  • Raja, M.A.Z., Manzar, M.A., Samar, R., 2015c. An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl. Math. Model., 39(10-11):3075–3093. http://dx.doi.org/10.1016/j.apm.2014.11.024

    Article  MathSciNet  Google Scholar 

  • Raja, M.A.Z., Khan, J.A., Behloul, D., et al., 2015d. Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl. Soft Comput., 26: 244–256. http://dx.doi.org/10.1016/j.asoc.2014.10.009

    Article  Google Scholar 

  • Raja, M.A.Z., Khan, J.A., Haroon, T., 2015e. Numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J. Taiw. Inst. Chem. Eng., 48: 26–39. http://dx.doi.org/10.1016/j.jtice.2014.10.018

    Article  Google Scholar 

  • Saadatmandi, A., Dehghan, M., 2009. Variational iteration method for solving a generalized pantograph equation. Comput. Math. Appl., 58(11-12):2190–2196. http://dx.doi.org/10.1016/j.camwa.2009.03.017

    Article  MathSciNet  MATH  Google Scholar 

  • Sedaghat, S., Ordokhani, Y., Dehghan, M., 2012. Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonl. Sci. Numer. Simul., 17(12): 4815–4830. http://dx.doi.org/10.1016/j.cnsns.2012.05.009

    Article  MathSciNet  MATH  Google Scholar 

  • Shakeri, F., Dehghan, M., 2010. Application of the decomposition method of Adomian for solving the pantograph equation of order m. J. Phys. Sci., 65(5): 453–460. http://dx.doi.org/10.1515/zna-2010-0510

    Google Scholar 

  • Srinivasan, S., Saghir, M.Z., 2014. Predicting thermodiffusion in an arbitrary binary liquid hydrocarbon mixtures using artificial neural networks. Neur. Comput. Appl., 25(5): 1193–1203. http://dx.doi.org/10.1007/s00521-014-1603-3

    Article  Google Scholar 

  • Tang, L., Ying, G., Liu, Y.J., 2014. Adaptive near optimal neural control for a class of discrete-time chaotic system. Neur. Comput. Appl., 25(5): 1111–1117. http://dx.doi.org/10.1007/s00521-014-1595-z

    Article  Google Scholar 

  • Tohidi, E., Bhrawy, A.H., Erfani, K.A., 2013. A collocation method based on Berneoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model, 37(6): 4283–4294. http://dx.doi.org/10.1016/j.apm.2012.09.032

    Article  MathSciNet  MATH  Google Scholar 

  • Troiano, L., Cosimo, B., 2014. Genetic algorithms supporting generative design of user interfaces: examples. Inform. Sci., 259: 433–451. http://dx.doi.org/10.1016/j.ins.2012.01.006

    Article  Google Scholar 

  • Uysal, A., Raif, B., 2013. Real-time condition monitoring and fault diagnosis in switched reluctance motors with Kohonen neural network. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(12): 941–952. http://dx.doi.org/10.1631/jzus.C1300085

    Article  Google Scholar 

  • Wright, S.J., 1997. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA.

    Book  MATH  Google Scholar 

  • Xu, D.Y., Yang, S.L., Liu, R.P., 2013. A mixture of HMM, GA,and Elman network for load prediction in cloud-oriented data centers. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(11): 845–858. http://dx.doi.org/10.1631/jzus.C1300109

    Article  Google Scholar 

  • Yusufoglu, E., 2010. An efficient algorithm for solving gener alized pantograph equations with linear functional argument. Appl. Math. Comput., 217(7): 3591–3595. http://dx.doi.org/10.1016/j.amc.2010.09.005

    MathSciNet  MATH  Google Scholar 

  • Yüzbasi, S., Mehmet, S., 2013. An exponential approximation for solutions of generalized pantograph-delay differential equations. Appl. Math. Model., 37(22): 9160–9173. http://dx.doi.org/10.1016/j.apm.2013.04.028

    Article  MathSciNet  Google Scholar 

  • Yüzbasi, S., Sahin, N., Sezer, M., 2011. A Bessel collocation method for numerical solution of generalized pantograph equations. Numer. Meth. Part. Diff. Eq., 28(4): 1105–1123. http://dx.doi.org/10.1002/num.20660

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H.G., Wang, Z., Liu, D., 2008. Global asymptotic stability of recurrent neural networks with multiple time-varying delays. IEEE Trans. Neur. Netw., 19(5): 855–873. http://dx.doi.org/10.1109/TNN.2007.912319

    Article  Google Scholar 

  • Zhang, Y.T., Liu, C.Y., Wei, S.S., et al., 2014. ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(7): 564–573. http://dx.doi.org/10.1631/jzus.C1300264

    Article  Google Scholar 

  • Zoveidavianpoor, M., 2014. A comparative study of artificial neural network and adaptive neurofuzzy inference system for prediction of compressional wave velocity. Neur. Comput. Appl., 25(5): 1169–1176. http://dx.doi.org/10.1007/s00521-014-1604-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Additional information

ORCID: Muhammad Asif Zahoor RAJA, http://orcid.org/0000-0001-9953-822X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, M.A.Z., Ahmad, I., Khan, I. et al. Neuro-heuristic computational intelligence for solving nonlinear pantograph systems. Frontiers Inf Technol Electronic Eng 18, 464–484 (2017). https://doi.org/10.1631/FITEE.1500393

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500393

Key words

CLC number

Navigation