Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator

  • Gopi Ram
  • Durbadal Mandal
  • Sakti Prasad Ghoshal
  • Rajib Kar


In this paper, an optimal design of linear antenna arrays having microstrip patch antenna elements has been carried out. Cat swarm optimization (CSO) has been applied for the optimization of the control parameters of radiation pattern of an antenna array. The optimal radiation patterns of isotropic antenna elements are obtained by optimizing the current excitation weight of each element and the inter-element spacing. The antenna arrays of 12, 16, and 20 elements are taken as examples. The arrays are designed by using MATLAB computation and are validated through Computer Simulation Technology-Microwave Studio (CST-MWS). From the simulation results it is evident that CSO is able to yield the optimal design of linear antenna arrays of patch antenna elements.

Key words

Patch antenna Linear antenna array Cat swarm optimization (CSO) Side lobe level (SLL) 

CLC number

TN957.2 TP391 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansari, J.A., Mishra, A., Yadav, N.P., et al., 2010. Analysis of pair of L-shaped slot loaded patch antenna for WLAN application.Int. Conf. on Power Control and Embedded Systems, p.1–5. http://dx.doi.org/10.1109/ICPCES.2010.5698691Google Scholar
  2. Artemenko, A., Mozharovskiy, A., Sevastyanov, A., et al., 2015. Electronically beam steerable lens antenna for 71-76/81-86 GHz backhaul applications. IEEE MTT-S Int. Microwave Symp., p.1–4. http://dx.doi.org/10.1109/MWSYM.2015.7166971Google Scholar
  3. Aslam, A., Bhatti, F.A., 2009. Matching technique for microstrip patch antenna using GCPW feed. Int. Conf. on Emerging Technologies, p.66–69. http://dx.doi.org/10.1109/ICET.2009.5353200Google Scholar
  4. Balanis, C.A., 2005. Antenna Theory: Analysis and Design (3rd Ed.). John Willey & Sons, New York.Google Scholar
  5. Blank, S.J., Hutt, M.F., 2005. On the empirical optimization of antenna arrays. IEEE Antennas Propag. Mag., 47(2): 58–67. http://dx.doi.org/10.1109/MAP.2005.1487780CrossRefGoogle Scholar
  6. CST, 2013. CST Microwave Studio User’s Manual.Google Scholar
  7. Eberhart, R.C., Shi, Y., 2001. Particle swarm optimization: developments, applications and resources. Proc. Congress Evolutionary Computation, p.81–86. http://dx.doi.org/10.1109/CEC.2001.934374Google Scholar
  8. Ghatak, R., Karmakar, A., Poddar, D.R., 2015. Evolutionary optimization of Haferman carpet fractal patterned antenna array. Int. J. RF Microw. Comput.-Aid. Eng., 25(8): 719–729. http://dx.doi.org/10.1002/mmce.20911CrossRefGoogle Scholar
  9. Güney, K., Akdagli, A., 2001. Null steering of linear antenna arrays using a modified tabu search algorithm. Progr. Electromagn. Res., 33: 167–182. http://dx.doi.org/10.2528/PIER00121402CrossRefGoogle Scholar
  10. Guo, H., Guo, C., Ding, J., 2015. Pencil beam pattern synthesis of subarrayed planar array. Int. J. RF Microw. Comput.-Aid. Eng., 25(1): 56–65. http://dx.doi.org/10.1002/mmce.20823CrossRefGoogle Scholar
  11. Haraz, O.M., Sebak, A.R., Alshebeili, S.A., 2015. Design of a printed log-periodic dipole array antenna with high gain for millimeter-wave applications. Int. J. RF Microw. Comput.-Aid. Eng., 25(3): 185–193. http://dx.doi.org/10.1002/mmce.20848CrossRefGoogle Scholar
  12. Hardel, G.R., Yallaparagada, N.T., Mandal, D., et al., 2011. Introducing deeper nulls in time modulated linear symmetric antenna array using real coded genetic alorithm. IEEE Symp. on Computers and Informatics, p.249–254. http://dx.doi.org/10.1109/ISCI.2011.5958922Google Scholar
  13. Hassan, E.E., Ragheb, H.A., 2012. Sidelobes level reduction using spatial optimization of the array factor. IEEE Antennas Wirel. Propag. Lett., 11: 756–759. http://dx.doi.org/10.1109/LAWP.2012.2202629CrossRefGoogle Scholar
  14. Haupt, R.L., 1997. Phase-only adaptive nulling with a genetic algorithm. IEEE Trans. Antennas Propag., 45(6): 1009–1015. http://dx.doi.org/10.1109/8.585749CrossRefGoogle Scholar
  15. Haupt, R.L., Werner, D.H., 2006. Genetic Algorithms in Electromagnetics. John Wiley & Sons. http://dx.doi.org/10.1002/047010628XGoogle Scholar
  16. Hoivik, N., Ramadoss, R., 2009. MEMS devices for antenna applications. In: Liu, D., Gaucher, B., Pfeiffer, U., et al. (Eds.), Advanced Millimeter-Wave Technologies: Antennas, Packaging and Circuits. Wiley, p.483–536. http://dx.doi.org/10.1002/9780470742969.ch12CrossRefGoogle Scholar
  17. Joshi, J.G., Pattnaik, S.S., Devi, S., 2012. Metamaterial embedded wearable rectangular microstrip patch antenna. Int. J. Antennas Propag., 2012:974315. http://dx.doi.org/10.1155/2012/974315CrossRefGoogle Scholar
  18. Kennedy, J., Eberhart, R.C., 2001. Swarm Intelligence. Morgan Kaufmann, San Francisco, CA.Google Scholar
  19. Koziel, S., Ogurtsov, S., 2015. Phase-spacing optimization of linear microstrip antenna arrays using simulation-based surrogate superposition models. Int. J. RF Microw. Comput.-Aid. Eng., 25(6): 536–547. http://dx.doi.org/10.1002/mmce.20890CrossRefGoogle Scholar
  20. Krous, J.D., 1950. Antenna. McGraw-Hill, New York.Google Scholar
  21. Liu, Y., Jiao, Y.C., Zhang, Y.M., 2015. A novel hybrid invasive weed optimization algorithm for pattern synthesis of array antennas. Int. J. RF Microw. Comput.-Aid. Eng., 25(2): 154–163. http://dx.doi.org/10.1002/mmce.20844CrossRefGoogle Scholar
  22. Mandal, D., Bhattacharjee, A.K., Ghoshal, S.P., 2009. Comparative optimal designs of non-uniformly excited concentric circular antenna array using evolutionary optimization techniques. 2nd Int. Conf. on Emerging Trends in Engineering and Technology, p.619–624. http://dx.doi.org/10.1109/ICETET.2009.54Google Scholar
  23. Mangaraj, B.B., Saha Misra, I., Sanyal, S.K., 2013. Application of bacteria foraging algorithm in designing log periodic dipole array for entire UHF TVspectrum. Int. J. RF Microw. Comput.-Aid. Eng., 23(2): 157–171. http://dx.doi.org/10.1002/mmce.20661Google Scholar
  24. Mouhamadou, M., Vaudon, P., 2007. Complex weight control of array pattern nulling. Int. J. RF Microw. Comput.-Aid. Eng., 17(3): 304–310. http://dx.doi.org/10.1002/mmce.20224CrossRefGoogle Scholar
  25. Panduro, M.A., Brizuela, C.A., Balderas, L.I., et al., 2009a. A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays. Progr. Electromagn. Res. B, 13: 171–186. http://dx.doi.org/10.2528/PIERB09011308CrossRefGoogle Scholar
  26. Panduro, M.A., Reyna, A., Camacho, J., 2009b. Design of scannable linear arrays with amplitude and phase optimization for maximum side lobe level reduction. Int. J. Electron., 96(3): 323–329. http://dx.doi.org/10.1080/00207210802613915CrossRefGoogle Scholar
  27. Park, J., Wang, Y., Itoh, T., 2003. A 60 GHz integrated antenna array for high-speed digital beamforming applications. IEEE MTT-S Int. Microwave Symp. Digest, p.1677–1680. http://dx.doi.org/10.1109/MWSYM.2003.1210461Google Scholar
  28. Park, M.Y., Eom, H.J., Park, Y.B., 2005. Coupling between coaxially fed monopoles in a parallel-plate waveguide. IEEE Trans. Antennas Propag., 53(9): 3109–3112. http://dx.doi.org/10.1109/TAP.2005.854546CrossRefGoogle Scholar
  29. Ram, G., Mandal, D., Ghoshal, S.P., et al., 2012. Minimization of side lobe of optimized uniformly spaced and non-uniform exited time modulated linear antenna arrays using genetic algorithm. LNCS, 7677: 451–458. http://dx.doi.org/10.1007/978-3-642-35380-2_53Google Scholar
  30. Ram, G., Mandal, D., Kar, R., et al., 2015a. Circular and concentric circular antenna array synthesis using cat swarm optimization. IETE Techn. Rev., 32(3): 204–217. http://dx.doi.org/10.1080/02564602.2014.1002543CrossRefGoogle Scholar
  31. Ram, G., Mandal, D., Kar, R., et al., 2015b. Opposition-based BAT algorithm for optimal design of circular and concentric circular arrays with improved far-field radiation characteristics. Int. J. Numer. Model. Electron. Netw. Dev. Fields, in press. http://dx.doi.org/10.1002/jnm.2087Google Scholar
  32. Ram, G., Mandal, D., Kar, R., et al., 2015c. Cat swarm optimization as applied to time-modulated concentric circular antenna array: analysis and comparison with other stochastic optimization methods. IEEE Trans. Antennas Propag., 63(9): 4180–4183. http://dx.doi.org/10.1109/TAP.2015.2444439CrossRefGoogle Scholar
  33. Reddy, M.J., Kumar, D.N., 2007. An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Eng. Optim., 39(1): 49–68. http://dx.doi.org/10.1080/03052150600930493MathSciNetCrossRefGoogle Scholar
  34. Simon, R., Whinnery, J.R., van Duzer, T., 1994. Fields and Waves in Communication Electronics (3rd Ed.). John Wiley & Sons, Canada.Google Scholar
  35. Singh, M.D., Kosta, S.P., Upadhyaya, D.R., et al., 1971. On the theory of axial mode helix.Google Scholar
  36. IETE J. Res., 17(3): 95–97. http://dx.doi.org/10.1080/03772063.1971.11486742Google Scholar
  37. Stutzman, W.L., Thiele, G.A., 1998. Antenna Theory and Design (2nd Ed.). John Wiley & Sons.Google Scholar
  38. Sun, J., Sun, W., Jiang, T., et al., 2005. Directive electromagnetic radiation of a line source scattered by a conducting cylinder coated with left-handed metamaterial. Microw. Opt. Technol. Lett., 47(3): 274–279. http://dx.doi.org/10.1002/mop.21145MathSciNetCrossRefGoogle Scholar
  39. Yallaparagada, N.T., Hardel, G.R., Mandal, D., et al., 2011. Genetic algorithm for null synthesizing of circular array antennas by amplitude control. IEEE Symp. on Computers & Informatics, p.1–5. http://dx.doi.org/10.1109/ISCI.2011.5958873Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Gopi Ram
    • 1
  • Durbadal Mandal
    • 1
  • Sakti Prasad Ghoshal
    • 2
  • Rajib Kar
    • 1
  1. 1.Department of Electronics and Communication EngineeringNational Institute of TechnologyDurgapurIndia
  2. 2.Department of Electrical EngineeringNational Institute of TechnologyDurgapurIndia

Personalised recommendations