Posture control of a 3-RPS pneumatic parallel platform with parameter initialization and an adaptive robust method

  • Guo-liang Tao
  • Ce Shang
  • De-yuan Meng
  • Chao-chao Zhou
Article
  • 114 Downloads

Abstract

A control algorithm for a 3-RPS parallel platform driven by pneumatic cylinders is discussed. All cylinders are controlled by proportional directional valves while the kinematic and dynamic properties of the system are modeled. The method of adaptive robust control is applied to the controller using a back-stepping approach and online parameter estimation. To compensate for the uncertainty and the influence caused by estimations, a fast dynamic compensator is integrated in the controller design. To prevent any influence caused by the load applied to the moving platform changing in a practical working situation, the identification of parameters is taken as the initialization of unknown parameters in the controller, which can improve the adaptability of the algorithm. Using these methods, the response rate of the parameter estimation and control performance were improved significantly. The adverse effects of load and restriction forces were eliminated by the initialization and online estimation. Experiments under different situations illustrated the effectiveness of the adaptive robust controller with parameter initialization, approaching average tracking errors of less than 1%.

Key words

Parameter initialization Adaptive robust control Parallel mechanism Pneumatic cylinders 

CLC number

TP273 

References

  1. Andrievsky, B., Kazunin, D.V., Kostygova, D.M., et al., 2014. Control of pneumatically actuated 6-DOF Stewart platform for driving simulator. Proc. 19th Int. Conf. on Methods and Models in Automation and Robotics, p.663–668. http://dx.doi.org/10.1109/MMAR.2014.6957433Google Scholar
  2. Atkeson, C.G., An, C.H., Hollerbach, J.M., 1985. Rigid body load identification for manipulators. Proc. 24th IEEE Conf. on Decision and Control, p.996–1002. http://dx.doi.org/10.1109/CDC.1985.268649Google Scholar
  3. Carneiro, J.F., de Almeida, F.G., 2007. Heat transfer evaluation of industrial pneumatic cylinders. Proc. Instit. Mech. Eng. Part I: J. Syst. Contr. Eng., 221(1): 119–128. http://dx.doi.org/10.1243/09596518JSCE188MathSciNetGoogle Scholar
  4. Chen, Z., Yao, B., Wang, Q.F., 2013a. Accurate motion control of linear motors with adaptive robust compensation of nonlinear electromagnetic field effect. IEEE/ASME Trans. Mechatron., 18(3): 1122–1129. http://dx.doi.org/10.1109/TMECH.2012.2197217CrossRefGoogle Scholar
  5. Chen, Z., Yao, B., Wang, Q.F., 2013b. Adaptive robust precision motion control of linear motors with integrated compensation of nonlinearities and bearing flexible modes. IEEE Trans. Ind. Inform., 9(2): 965–973. http://dx.doi.org/10.1109/TII.2012.2225439CrossRefGoogle Scholar
  6. Chen, Z., Yao, B., Wang, Q.F., 2015. μ-synthesis-based adaptive robust control of linear motor driven stages with high-frequency dynamics: a case study. IEEE/ASME Trans. Mechatron., 20(3): 1482–1490. http://dx.doi.org/10.1109/TMECH.2014.2369454CrossRefGoogle Scholar
  7. Cheng, Y.M., Chen, Y.S., 2013. An angle trajectory tracking for a 3-DOF pneumatic motion platform by the NI compact RIO embedded system. J. Mech. Eng. Autom., 3: 14–21.CrossRefGoogle Scholar
  8. Díaz-Rodríguez, M., Mata, V., Valera, Á., et al., 2010. A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mech. Mach. Theory, 45(9): 1337–1356. http://dx.doi.org/10.1016/j.mechmachtheory.2010.04.007CrossRefGoogle Scholar
  9. Farhat, N., Mata, V., Page, Á., et al., 2008. Identification of dynamic parameters of a 3-DOF RPS parallel manipulator. Mech. Mach. Theory, 43(1): 1–17. http://dx.doi.org/10.1016/j.mechmachtheory.2006.12.011CrossRefGoogle Scholar
  10. Girin, A., Plestan, F., Brun, X., et al., 2009. High-order sliding-mode controllers of an electropneumatic actuator: application to an aeronautic benchmark. IEEE Trans. Contr. Syst. Technol., 17(3): 633–645. http://dx.doi.org/10.1109/TCST.2008.2002950CrossRefGoogle Scholar
  11. Goodwin, G.C., Mayne, D.Q., 1987. A parameter estimation perspective of continuous time model reference adaptive control. Automatica, 23(1): 57–70. http://dx.doi.org/10.1016/0005-1098(87)90118-XMathSciNetCrossRefGoogle Scholar
  12. Grewal, K.S., Dixon, R., Pearson, J., 2011. Control design for a pneumatically actuated parallel link manipulator. Proc. 21st Int. Conf. on Systems Engineering, p.43–48. http://dx.doi.org/10.1109/ICSEng.2011.16Google Scholar
  13. Grewal, K.S., Dixon, R., Pearson, J., 2012. LQG controller design applied to a pneumatic Stewart-Gough platform. Int. J. Autom. Comput., 9(1): 45–53. http://dx.doi.org/10.1007/s11633-012-0615-7CrossRefGoogle Scholar
  14. Grotjahn, M., Heimann, B., Abdellatif, H., 2004. Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control. Multibody Syst. Dynam., 11(3): 273–294. http://dx.doi.org/10.1023/B:MUBO.0000029426.05860.c2MathSciNetCrossRefGoogle Scholar
  15. Khayati, K., Bigras, P., Dessaint, L.A., 2009. LuGre modelbased friction compensation and positioning control for a pneumatic actuator using multi-objective output-feedback control via LMI optimization. Mechatronics, 19(4): 535–547. http://dx.doi.org/10.1016/j.mechatronics.2008.12.006CrossRefGoogle Scholar
  16. Kimura, T., Hara, S., Fujita, T., et al., 1997. Feedback linearization for pneumatic actuator systems with static friction. Contr. Eng. Pract., 5(10): 1385–1394. http://dx.doi.org/10.1016/S0967-0661(97)00135-4CrossRefGoogle Scholar
  17. Meng, D., Tao, G., Chen, J., et al., 2011. Modeling of a pneumatic system for high-accuracy position control. Proc. Int. Conf. on Fluid Power and Mechatronics, p.505–510. http://dx.doi.org/10.1109/FPM.2011.6045817CrossRefGoogle Scholar
  18. Meng, D., Tao, G., Zhu, X., 2013. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders. Int. J. Contr., 86(9): 1620–1633. http://dx.doi.org/10.1080/00207179.2013.792002MathSciNetCrossRefGoogle Scholar
  19. Merlet, J.P., 2002. Parallel Robots. Kluwer Academic Publishers, Norwell, MA, USA.MATHGoogle Scholar
  20. Pfreundschuh, G.H., Kumar, V., Sugar, T.G., 1991. Design and control of a 3-DOF in-parallel actuated manipulator. IEEE Int. Conf. on Robotics and Automation, p.1659–1664. http://dx.doi.org/10.1109/ROBOT.1991.131857Google Scholar
  21. Pradipta, J., Klünder, M., Weickgenannt, M., et al., 2013. Development of a pneumatically driven flight simulator Stewart platform using motion and force control. Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.158–163. http://dx.doi.org/10.1109/AIM.2013.6584085Google Scholar
  22. Ramsauer, M., Kastner, M., Ferrara, P., et al., 2012. A pneumatically driven Stewart platform used as fault detection device. Appl. Mech. Mater., 186: 227–233. http://dx.doi.org/10.4028/www.scientific.net/AMM.186.227CrossRefGoogle Scholar
  23. Richardson, R., Plummer, A.R., Brown, M.D., 2001. Selftuning control of a low-friction pneumatic actuator under the influence of gravity. IEEE Trans. Contr. Syst. Technol., 9(2): 330–334. http://dx.doi.org/10.1109/87.911384CrossRefGoogle Scholar
  24. Schulte, H., Hahn, H., 2004. Fuzzy state feedback gain scheduling control of servo-pneumatic actuators. Contr. Eng. Pract., 12(5): 639–650. http://dx.doi.org/10.1016/S0967-0661(03)00148-5CrossRefGoogle Scholar
  25. Smaoui, M., Brun, X., Thomasset, D., 2006. A study on tracking position control of an electropneumatic system using backstepping design. Contr. Eng. Pract., 14(8): 923–933. http://dx.doi.org/10.1016/j.conengprac.2005.05.003CrossRefGoogle Scholar
  26. Tao, G., Zuo, H., 2014. Cross-coupling adaptive robust control study of single/multiple 3-DOF pneumatic parallel platforms. Proc. 9th JFPS Int. Symp. on Fluid Power.Google Scholar
  27. Wang, J., Fan, L., Hu, L., 2005. Positional forward solution and numeric-symbolic solution of singular configuration analysis for 3-RPS parallel platform mechanism. J. Mach. Des., 22(5): 15–19(in Chinese).Google Scholar
  28. Yao, B., Tomizuka, M., 1997. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica, 33(5): 893–900. http://dx.doi.org/10.1016/S0005-1098(96)00222-1MathSciNetCrossRefGoogle Scholar
  29. Yao, J., Jiao, Z., Ma, D., 2014a. Extended-state-observerbased output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Trans. Ind. Electron., 61(11): 6285–6293. http://dx.doi.org/10.1109/TIE.2014.2304912CrossRefGoogle Scholar
  30. Yao, J., Jiao, Z., Ma, D., et al., 2014b. High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties. IEEE/ASME Trans. Mechatron., 19(2): 633–641. http://dx.doi.org/10.1109/TMECH.2013.2252360CrossRefGoogle Scholar
  31. Zheng, K.J., Cui, P., Guo, H.J., 2011. Kinematics and static characteristics analysis of 3-RPS parallel mechanism. J. Mach. Des., 28(9) (in Chinese).Google Scholar
  32. Zhu, X., Tao, G., Yao, B., et al., 2008. Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles. Automatica, 44(9): 2248–2257. http://dx.doi.org/10.1016/j.automatica.2008.01.015MathSciNetCrossRefGoogle Scholar
  33. Zhu, X., Tao, G., Yao, B., et al., 2009. Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumatic muscles. IEEE Trans. Contr. Syst. Technol., 17(3): 576–588. http://dx.doi.org/10.1109/TCST.2008.2001715CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Guo-liang Tao
    • 1
  • Ce Shang
    • 1
  • De-yuan Meng
    • 2
  • Chao-chao Zhou
    • 1
  1. 1.The State Key Laboratory of Fluid Power Transmission and ControlZhejiang UniversityHangzhouChina
  2. 2.School of Mechatronic EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations