Enhancing the performance of futurewireless networks with software-defined networking



To provide ubiquitous Internet access under the explosive increase of applications and data traffic, the current network architecture has become highly heterogeneous and complex, making network management a challenging task. To this end, software-defined networking (SDN) has been proposed as a promising solution. In the SDN architecture, the control plane and the data plane are decoupled, and the network infrastructures are abstracted and managed by a centralized controller. With SDN, efficient and flexible network control can be achieved, which potentially enhances network performance. To harvest the benefits of SDN in wireless networks, the software-defined wireless network (SDWN) architecture has been recently considered. In this paper, we first analyze the applications of SDN to different types of wireless networks. We then discuss several important technical aspects of performance enhancement in SDN-based wireless networks. Finally, we present possible future research directions of SDWN.


Software-defined networking (SDN) Software-defined wireless networks (SDWN) OpenFlow Performance enhancement 

CLC number



  1. Abbasia, A.A., Younis, M., 2007. A survey on clustering algorithms for wireless sensor networks. Comput. Commun., 30(14-15): 2826–2841. Scholar
  2. Akkaya, K., Younis, M., 2005. A survey on routing protocols for wireless sensor networks. Ad Hoc Netw., 3(3): 325–349. Scholar
  3. Akyildiz, I.F., Wang, X., 2005. A survey on wireless mesh networks. IEEE Commun. Mag., 43(9):S23–S30. Scholar
  4. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., et al., 2002. Wireless sensor networks: a survey. Comput. Netw., 38(4): 393–422. Scholar
  5. Ali-Ahmad, H., Cicconetti, C., de la Oliva, A., et al., 2013. CROWD: an SDN approach for DenseNets. Proc. 2nd European Workshop on Software Defined Networks, p.25–31. Scholar
  6. Al-Karaki, J.N., Kamal, A.E., 2004. Routing techniques in wireless sensor networks: a survey. IEEE Wirel. Commun., 11(6): 6–28. Scholar
  7. Andrews, J.G., Buzzi, S., Choi, W., et al., 2014. What will 5G be? IEEE J. Sel. Areas Commun., 32(6): 1065–1082. Scholar
  8. Arslan, M.Y., Sundaresan, K., Rangarajan, S., 2015. Software-defined networking in cellular radio access networks: potential and challenges. IEEE Commun. Mag., 53(1): 150–156. Scholar
  9. Arslan, Z., Erel, M., Özcevik, Y., et al., 2014. SDoff: a software-defined offloading controller for heterogeneous networks. Proc. IEEE Wireless Communications and Networking Conf., p.2827–2832. Scholar
  10. Bansal, M., Mehlman, J., Katti, S., et al., 2012. Open-Radio: a programmable wireless dataplane. Proc. 1st Workshop on Hot Topics in Software Defined Networks, p.109–114. Scholar
  11. Bernardos, C.J., de la Oliva, A., Serrano, P., et al., 2014. An architecture for software defined wireless networking. IEEE Wirel. Commun., 21(3): 52–61. Scholar
  12. Cai, Y., Yu, F.R., Liang, C., 2014. Resource sharing for software defined D2D communications in virtual wireless networks with imperfect NSI. Proc. IEEE Global Communications Conf., p.4448–4453. Scholar
  13. Cao, Y., Jiang, T., Wang, C., 2015. Cooperative deviceto-device communications in cellular networks. IEEE Wirel. Commun., 22(3): 124–129. Scholar
  14. Chandrasekhar, V., Andrews, J.G., 2009. Spectrum allocation in tiered cellular networks. IEEE Trans. Commun., 57(10): 3059–3068. Scholar
  15. Chandrasekhar, V., Andrews, J.G., Muharemovic, T., et al., 2009. Power control in two-tier femtocell networks. IEEE Trans. Wirel. Commun., 8(8): 4316–4328. Scholar
  16. Cheung, W.C., Quek, T.Q.S., Kountouris, M., 2012. Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE J. Sel. Areas Commun., 30(3): 561–574. Scholar
  17. Dely, P., Kassler, A., Bayer, N., 2011. OpenFlow for wireless mesh networks. Proc. 20th Int. Conf. on Computer Communications and Networks, p.1–6. Scholar
  18. Demirkol, I., Ersoy, C., Alagöz, F., 2006. MAC protocols for wireless sensor networks: a survey. IEEE Commun. Mag., 44(4): 115–121.CrossRefGoogle Scholar
  19. Doppler, K., Rinne, M., Wijting, C., et al., 2009. Device-todevice communication as an underlay to LTE-advanced networks. IEEE Commun. Mag., 47(12): 42–49. Scholar
  20. Feng, M., Mao, S., 2016). Harvest the potential of massive MIMO with multi-layer techniques. IEEE Netw., in press.MathSciNetCrossRefGoogle Scholar
  21. Feng, M., Chen, D., Wang, Z., et al., 2012a). An improved spectrum management scheme for OFDMA femtocell networks. Proc. 1st IEEE Int. Conf. on Communications in China, p.132–136. Scholar
  22. Feng, M., Chen, D., Wang, Z., et al., 2012b). Throughput improvement for OFDMA femtocell networks through spectrum allocation and access control strategy. Proc. Computing, Communications and Applications Conf., p.387–391. Scholar
  23. Feng, M., Jiang, T., Chen, D., et al., 2014. Cooperative small cell networks: high capacity for hotspots with interference mitigation. IEEE Wirel. Commun., 21(6): 108–116. Scholar
  24. Feng, M., Mao, S., Jiang, T., 2015a). Duplex mode selection and channel allocation for full-duplex cognitive femtocell networks. Proc. IEEE Wireless Communications and Networking Conf., p.1900–1905. Scholar
  25. Feng, M., Mao, S., Jiang, T., 2015b. Joint duplex mode selection, channel allocation, and power control for fullduplex cognitive femtocell networks. Dig. Commun. Netw., 1(1): 30–44. Scholar
  26. Feng, M., Mao, S., Jiang, T., 2016. BOOST: base station on-off switching strategy for energy efficient massive MIMO HetNets. Proc. IEEE INFOCOM, p.1395–1403.Google Scholar
  27. Fodor, G., Dahlman, E., Mildh, G., et al., 2012. Design aspects of network assisted device-to-device communications. IEEE Commun. Mag., 50(3): 170–177. Scholar
  28. Frangoudis, P.A., Polyzos, G.C., 2014. Security and performance challenges for user-centric wireless networking. IEEE Commun. Mag., 52(12): 48–55. Scholar
  29. Gao, P., Chen, D., Feng, M., et al., 2013. On the interference avoidance method in two-tier LTE networks with femtocells. Proc. IEEE Wireless Communications and Networking Conf., p.3585–3590. Scholar
  30. Golrezaei, N., Shanmugam, K., Dimakis, A.G., et al., 2012. FemtoCaching: wireless video content delivery through distributed caching helpers. Proc. IEEE INFOCOM, p.1107–1115. Scholar
  31. Golrezaei, N., Molisch, A.F., Dimakis, A.G., et al., 2013. Femtocaching and device-to-device collaboration: a new architecture for wireless video distribution. IEEE Commun. Mag., 51(4): 142–149. Scholar
  32. Goyal, S., Liu, P., Hua, S., et al., 2013. Analyzing a fullduplex cellular system. Proc. 47th Annual Conf. on Information Sciences and Systems, p.1–6. Scholar
  33. Gudipati, A., Perry, D., Li, L.E., et al., 2013. SoftRAN: software defined radio access network. Proc. 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, p.25–30. Scholar
  34. Guimarães, C., Corujo, D., Aguiar, R.L., et al., 2013. Empowering software defined wireless networks through media independent handover management. Proc. IEEE Global Communications Conf., p.2204–2209. Scholar
  35. Guo, P., Jiang, T., Zhang, K., et al., 2009. Clustering algorithm in initialization of multi-hop wireless sensor networks. IEEE Trans. Wirel. Commun., 8(12): 5713–5717. Scholar
  36. Hoang, A.T., Liang, Y.C., 2008. Downlink channel assignment and power control for cognitive radio networks. IEEE Trans. Wirel. Commun., 7(8): 3106–3117. Scholar
  37. Hoydis, J., Hosseini, K., ten Brink, S., et al., 2013. Making smart use of excess antennas: massive MIMO, small cells, and TDD. Bell Labs Tech. J., 18(2): 5–21. Scholar
  38. Hu, D., Mao, S., 2011. Multicast in femtocell networks: a successive interference cancellation approach. Proc. IEEE Global Telecommunications Conf., p.1–6. Scholar
  39. Hu, D., Mao, S., 2012. On medium grain scalable video streaming over femtocell cognitive radio networks. IEEE J. Sel. Areas Commun., 30(3): 641–651. Scholar
  40. Hu, F., Hao, Q., Bao, K., 2014. A survey on software-defined network and OpenFlow: from concept to implementation. IEEE Commun. Surv. Tutor., 16(4): 2181–2206. Scholar
  41. Huang, Y., Walsh, P.A., Li, Y., et al., 2014. A distributed polling service-based MAC protocol testbed. Int. J. Commun. Syst., 27(12): 3901–3921. Scholar
  42. Jararweh, Y., Ayyoub, M.A., Doulat, A., et al., 2014. SDCRN: software defined cognitive radio network framework. Proc. IEEE Int. Conf. on Cloud Engineering, p.592–597. Scholar
  43. Jiang, Z., Mao, S., 2013. Access strategy and dynamic downlink resource allocation for femtocell networks. Proc. IEEE Global Communications Conf., p.3528–3533. Scholar
  44. Jiang, Z., Mao, S., 2015. Energy delay trade-off in cloud offloading for multi-core mobile devices. IEEE Access, 3: 2306–2316. Scholar
  45. Kerpez, K.J., Cioffi, J.M., Ginis, G., et al., 2014. Softwaredefined access networks. IEEE Commun. Mag., 52(9): 152–159. Scholar
  46. Kim, H., Feamster, N., 2013. Improving network management with software defined networking. IEEE Commun. Mag., 51(2): 114–119. Scholar
  47. Kompella, S., Mao, S., Hou, Y.T., et al., 2009. On path selection and rate allocation for video in wireless mesh networks. IEEE/ACM Trans. Netw., 17(1): 212–224. Scholar
  48. Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., et al., 2015. Software-defined networking: a comprehensive survey. Proc. IEEE, 103(1): 14–76. Scholar
  49. Lee, H.C., Oh, D.C., Lee, Y.H., 2010. Mitigation of interfemtocell interference with adaptive fractional frequency reuse. Proc. IEEE Int. Conf. on Communications, p.1–5. Scholar
  50. Li, Y., Mao, S., Panwar, S.S., et al., 2008. On the performance of distributed polling service-based medium access control. IEEE Trans. Wirel. Commun., 7(11): 4635–4645. Scholar
  51. Luo, T., Tan, H.P., Quek, T.Q.S., 2012. Sensor OpenFlow: enabling software-defined wireless sensor networks. IEEE Commun. Lett., 16(11): 1896–1899. Scholar
  52. Madan, R., Borran, J., Sampath, A., et al., 2010. Cell association and interference coordination in heterogeneous LTE-A cellular networks. IEEE J. Sel. Areas Commun., 28(9): 1479–1489. Scholar
  53. Mao, S., Hou, Y.T., 2004. BeamStar: a new low-cost data routing technology for wireless sensor networks. Proc. IEEE Global Telecommunications Conf., p.2919–2924. Scholar
  54. Mao, S., Lin, S., Panwar, S.S., et al., 2003. Video transport over ad hoc networks: multistream coding with multipath transport. IEEE J. Sel. Areas Commun., 21(10): 1721–1737. Scholar
  55. Mao, S., Lin, S., Wang, Y., et al., 2005. Multipath video transport over wireless ad hoc networks. IEEE Wirel. Commun., 12(4): 42–49. Scholar
  56. Mao, S., Bushmitch, D., Narayanan, S., et al., 2006. MRTP: a multi-flow real-time transport protocol for ad hoc networks. IEEE Trans. Multim., 8(2): 356–369. Scholar
  57. Mao, S., Cheng, X., Hou, Y., et al., 2007. On joint routing and server selection for MD video streaming in ad hoc networks. IEEE Trans. Wirel. Commun., 6(1): 338–347. Scholar
  58. Mao, S., Hou, Y.T., Sherali, H.D., et al., 2008. Multimediacentric routing for multiple description video in wireless mesh networks. IEEE Netw., 22(1): 19–24. Scholar
  59. Mitola, J., Maguire, G.Q., 1999. Cognitive radio: making software radios more personal. IEEE Pers. Commun., 6(4): 13–18. Scholar
  60. Nunes, B.A.A., Mendonca, M., Nguyen, X.N., et al., 2014. A survey of software-defined networking: past, present, future of programmable networks. IEEE Commun. Surv. Tutor., 16(3): 1617–1634. Scholar
  61. Pentikousis, K., Wang, Y., Hu, W., 2013. MobileFlow: toward software-defined mobile networks. IEEE Commun. Mag., 51(7): 44–53. Scholar
  62. Qiang, L., Li, J., Huang, C., 2014. A software-defined network based vertical handoff scheme for heterogeneous wireless networks. Proc. IEEE Global Communications Conf., p.4671–4676. Scholar
  63. Saquib, N., Hossain, E., Le, L.B., et al., 2012. Interference management in OFDMA femtocell networks: issues and approaches. IEEE Wirel. Commun., 19(3): 86–95. Scholar
  64. Schulz-Zander, J., Suresh, L., Sarrar, N., et al., 2014. Programmatic orchestration of WiFi networks. Proc. USENIX Annual Technical Conf., p.347–358.Google Scholar
  65. Sezer, S., Scott-Hayward, S., Chouhan, P.K., et al., 2013. Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag., 51(7): 36–43. Scholar
  66. Son, I.K., Mao, S., Sajal, K.D., 2014a. On the design and optimization of a free space optical access network. Opt. Switch. Netw., 11(A):29–43. Scholar
  67. Son, I.K., Mao, S., Sajal, K.D., 2014b. On joint topology design and load balancing in free-space optical networks. Opt. Switch. Netw., 11(A):92–104. Scholar
  68. Tang, N., Mao, S., Kompella, S., 2016. On power control in full duplex underlay cognitive radio networks. Ad Hoc Netw., 37(2): 183–194. Scholar
  69. Vestin, J., Dely, P., Kassler, A., et al., 2013. CloudMAC: towards software defined WLANs. ACM SIGMOBILE Mob. Comput. Commun. Rev., 16(4): 42–45. Scholar
  70. Wang, X., Mao, S., 2012. Distributed power control in full duplex wireless networks. Proc. IEEE Wireless Communications and Networking Conf., p.1165–1170. Scholar
  71. Xia, W., Wen, Y., Foh, C., et al., 2015. A survey on software-defined networking. IEEE Commun. Surv. Tutor., 17(1): 27–51. Scholar
  72. Xing, Y., Mathur, C.N., Haleem, M.A., et al., 2007. Dynamic spectrum access with QoS and interference temperature constraints. IEEE Trans. Mob. Comput., 6(4): 423–433. Scholar
  73. Xu, Y., Mao, S., 2015). User association in massive MIMO HetNets. IEEE Syst. J., in press.
  74. Xu, Y., Mao, S., Su, X., 2012. On adopting interleave division multiple access to two-tier femtocell networks: the uplink case. Proc. IEEE Int. Conf. on Communications, p.591–595. Scholar
  75. Xu, Y., Yue, G., Mao, S., 2014. User grouping for massive MIMO in FDD systems: new design methods and analysis. IEEE Access, 2: 947–959. Scholar
  76. Ye, Q., Rong, B., Chen, Y., et al., 2013. User association for load balancing in heterogeneous cellular networks. IEEE Trans. Wirel. Commun., 12(6): 2706–2716. Scholar
  77. Yeganeh, S.H., Tootoonchian, A., Ganjali, Y., 2013. On scalability of software-defined networking. IEEE Commun. Mag., 51(2): 136–141. Scholar
  78. Yick, J., Mukherjee, B., Ghosal, D., 2008. Wireless sensor network survey. Comput. Netw., 52(12): 2292–2330. Scholar
  79. Zhang, R., Song, L., Han, Z., et al., 2013. Distributed resource allocation for device-to-device communications underlaying cellular networks. Proc. IEEE Int. Conf. on Communications, p.1889–1893. Scholar
  80. Zhao, Y., Mao, S., Neel, J.O., et al., 2009. Performance evaluation of cognitive radios: metrics, utility functions, and methodology. Proc. IEEE, 97(4): 642–659. Scholar
  81. Zhou, H., Mao, S., Agrawal, P., 2015a. Approximation algorithms for cell association and scheduling in femtocell networks. IEEE Trans. Emerg. Topics Comput., 3(3): 432–443. Scholar
  82. Zhou, H., Hu, D., Mao, S., et al., 2015b). Cell association and handover management in femtocell networks. Proc. IEEE Wireless Communications and Networking Conf., p.661–666. Scholar
  83. Zhu, Z., Gupta, P., Wang, Q., et al., 2011). Virtual base station pool: towards a wireless network cloud for radio access networks. Proc. 8th ACM Int. Conf. on Computing Frontiers, Article 34.

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Electrical & Computer EngineeringAuburn UniversityAuburnUSA
  2. 2.School of Electronics & Information EngineeringHuazhong University of Science & TechnologyWuhanChina

Personalised recommendations