Advertisement

Detecting faulty sensors in an array using symmetrical structure and cultural algorithm hybridized with differential evolution

  • Shafqat Ullah Khan
  • Ijaz Mansoor Qureshi
  • Fawad Zaman
  • Wasim Khan
Article

Abstract

The detection of fully and partially defective sensors in a linear array composed of N sensors is addressed. First, the symmetrical structure of a linear array is proposed. Second, a hybrid technique based on the cultural algorithm with differential evolution is developed. The symmetrical structure has two advantages: (1) Instead of finding all damaged patterns, only (N–1)/2 patterns are needed; (2) We are required to scan the region from 0° to 90° instead of from 0° to 180°. Obviously, the computational complexity can be reduced. Monte Carlo simulations were carried out to validate the performance of the proposed scheme, compared with existing methods in terms of computational time and mean square error.

Keywords

Cultural algorithm Differential evolution Linear symmetrical sensor array 

CLC number

TN929 

References

  1. Becerra, R.L., Coello, C.A.C., 2006. Cultured differential evolution for constrained optimization. Comput. Method Appl. Mech. Eng., 195(33-36):4303–4322. http://dx.doi.org/10.1016/j.cma.2005.09.006MathSciNetCrossRefGoogle Scholar
  2. Bucci, O.M., Capozzoli, A., de Elia, G., 2000. Diagnosis of array faults from far-field amplitude-only data. IEEE Trans. Antennas Propag., 48(5):647–652. http://dx.doi.org/10.1109/8.855482CrossRefGoogle Scholar
  3. Choudhury, B., Acharya, O.P., Patnaik, A., 2013. Bacteria foraging optimization in antenna engineering: an appli-cation to array fault finding. Int. J. RF Microw. Com-put.-Aid. Eng., 23(2):141–148. http://dx.doi.org/10.1002/mmce.20659Google Scholar
  4. Das, S., Konar, A., 2006. Two-dimensional IIR filter design with modern search heuristics: a comparative study. Int. J. Comput. Intell. Appl., 6(3):329–355. http://dx.doi.org/10.1142/S1469026806001848CrossRefGoogle Scholar
  5. Fonollosa, J., Vergara, A., Huerta, R., 2013. Algorithmic mitigation of sensor failure: is sensor replacement really necessary? Sens. Actuat. B., 183:211–221. http://dx.doi.org/10.1016/j.snb.2013.03.034CrossRefGoogle Scholar
  6. Jin, X.D., Reynolds, R.G., 1999. Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: a cultural algorithm approach. Proc. Congress on Evolutionary Computation, p.1672–1678. http://dx.doi.org/10.1109/CEC.1999.785475Google Scholar
  7. Khan, S.U., Qureshi, I.M., Zaman, F., et al., 2013. Null placement and sidelobe suppression in failed array using symmetrical element failure technique and hybrid heu-ristic computation. Prog. Electromagn. Res. B, 52:165–184. http://dx.doi.org/10.2528/PIERB13032712CrossRefGoogle Scholar
  8. Khan, S.U., Qureshi, I.M., Zaman, F., et al., 2014. Correction of faulty sensors in phased array radars using symmetrical sensor failure technique and cultural algorithm with dif-ferential evolution. Sci. World J., 2014:852539. http://dx.doi.org/10.1155/2014/852539Google Scholar
  9. Khan, S.U., Qureshi, I.M., Naveed, A., et al., 2015. Detection of defective sensors in phased array using compressed sensing and hybrid genetic algorithm. J. Sens., 501: 718914. http://dx.doi.org/10.1155/2016/6139802Google Scholar
  10. Mailloux, R.J., 1996. Array failure correction with a digitally beamformed array. IEEE Trans. Antennas Propag., 44(12):1543–1550. http://dx.doi.org/10.1109/8.546240CrossRefGoogle Scholar
  11. Oliveri, G., Donelli, M., Massa, A., 2009. Linear array thin-ning exploiting almost difference sets. IEEE Trans. An-tennas Propag., 57(12):3800–3812. http://dx.doi.org/10.1109/TAP.2009.2027243CrossRefGoogle Scholar
  12. Oliveri, G., Manica, L., Massa, A., 2010. ADS-based guide-lines for thinned planar arrays. IEEE Trans. Antennas Propag., 58(6):1935–1948. http://dx.doi.org/10.1109/TAP.2010.2046858CrossRefGoogle Scholar
  13. Patnaik, A., Choudhury, B., Pradhan, P., et al., 2007. An ANN application for fault finding in antenna arrays. IEEE Trans. Antennas Propag., 55(3):775–777. http://dx.doi.org/10.1109/TAP.2007.891557CrossRefGoogle Scholar
  14. Reynolds, R.G., 1994. An introduction to cultural algorithms. Proc. 3rd Annual Conf. on Evolutionary Programming, p.131–139.Google Scholar
  15. Reynolds, R.G., Chung, C.J., 1996a. A self-adaptive approach to representation shifts in cultural algorithms. Proc. IEEE Int. Conf. on Evolutionary Computation, p.94–99. http://dx.doi.org/10.1109/ICEC.1996.542340CrossRefGoogle Scholar
  16. Reynolds, R.G., Chung, C.J., 1996b. The use of cultural algo-rithms to evolve multiagent cooperation. Proc. Micro-Robot World Cup Soccer Tournament, p.53–56.Google Scholar
  17. Reynolds, R.G., Peng, B., 2005. Knowledge learning and social swarms in cultural systems. J. Math. Sociol., 29(2): 115–132. http://dx.doi.org/10.1080/00222500590920851CrossRefGoogle Scholar
  18. Rodríguez-González, J.A., Ares-Pena, F., Palacios, H., et al., 2000. Finding defective elements in planar arrays using genetic algorithms. Prog. Electromagn. Res., 29:25–37. http://dx.doi.org/10.2528/PIER00011401CrossRefGoogle Scholar
  19. Rodríguez-González, J.A., Ares-Pena, F., Fernández-Delgado, M., et al., 2009. Rapid method for finding faulty elements in antenna arrays using far field pattern samples. IEEE Trans. Antennas Propag., 57(6):1679–1683. http://dx.doi.org/10.1109/TAP.2009.2019915CrossRefGoogle Scholar
  20. Rogalsky, T., Kocabiyik, S., Derksen, R.W., 2000. Differential evolution in aerodynamic optimization. Can. Aeronaut. Space J., 46(4):183–190.Google Scholar
  21. Storn, R., Price, K., 1997. Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. J. Glob. Optim., 11(4):341–359. http://dx.doi.org/10.1023/A:1008202821328CrossRefGoogle Scholar
  22. Wolff, I., 1937. Determination of the radiating system which will produce a specified directional characteristic. Proc. Inst. Radio Eng., 25(5):630–643. http://dx.doi.org/10.1109/JRPROC.1937.228158Google Scholar
  23. Xu, N., Christodoulou, C.G., Barbin, S.E., et al., 2007. De-tecting failure of antenna array elements using machine learning optimization. IEEE Antennas and Propagation Society Int. Symp., p.5753–5756. http://dx.doi.org/10.1109/APS.2007.4396858Google Scholar
  24. Yeo, B.K., Lu, Y.L., 1999. Array failure correction with a genetic algorithm. IEEE Trans. Antennas Propag., 47(5):823–828. http://dx.doi.org/10.1109/8.774136CrossRefGoogle Scholar
  25. Zaman, F., Qureshi, I.M., Naveed, A., et al., 2012a. Amplitude and directional of arrival estimation: comparison between different techniques. Prog. Electromagn. Res. B, 39:319–335. http://dx.doi.org/10.2528/PIERB12022109CrossRefGoogle Scholar
  26. Zaman, F., Qureshi, I.M., Naveed, A., et al., 2012b. Joint estimation of amplitude, direction of arrival and range of near field sources using memetic computing. Prog. Electromagn. Res. C, 31:199–213. http://dx.doi.org/10.2528/PIERC12052811CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Shafqat Ullah Khan
    • 1
  • Ijaz Mansoor Qureshi
    • 2
  • Fawad Zaman
    • 3
  • Wasim Khan
    • 4
  1. 1.School of Engineering & Applied SciencesISRA UniversityIslamabadPakistan
  2. 2.Electrical DepartmentAir UniversityIslamabadPakistan
  3. 3.Electrical DepartmentCOMSAT Institute of Information TechnologyAttockPakistan
  4. 4.Electronic Engineering DepartmentInternational Islamic University, H-10IslamabadPakistan

Personalised recommendations