Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR

  • Hui Zhang
  • Jun Hong
  • Xiao-lan Qiu
  • Ji-chuan Li
  • Fang-fang Li
  • Feng Ming
Article

Abstract

Two approximations, center-beam approximation and reference digital elevation model (DEM) approximation, are used in synthetic aperture radar (SAR) motion compensation procedures. They usually introduce residual motion compensation errors for airborne single-antenna SAR imaging and SAR interferometry. In this paper, we investigate the effects of residual uncompensated motion errors, which are caused by the above two approximations, on the performance of airborne along-track interferometric SAR (ATI-SAR). The residual uncompensated errors caused by center-beam approximation in the absence and in the presence of elevation errors are derived, respectively. Airborne simulation parameters are used to verify the correctness of the analysis and to show the impacts of residual uncompensated errors on the interferometric phase errors for ATI-SAR. It is shown that the interferometric phase errors caused by the center-beam approximation with an accurate DEM could be neglected, while the interferometric phase errors caused by the center-beam approximation with an inaccurate DEM cannot be neglected when the elevation errors exceed a threshold. This research provides theoretical bases for the error source analysis and signal processing of airborne ATI-SAR.

Keywords

Synthetic aperture radar (SAR) Along-track interferometric Motion compensation Residual error Interferometric phase 

CLC number

TN959.73 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Budillon, A., Pascazio, V., Schirinzi, G., 2008. Estimation of radial velocity of moving targets by along-track interferometric SAR systems. IEEE Geosci. Remote Sens. Lett., 5(3): 349–353. http://dx.doi.org/10.1109/lgrs.2008.915937CrossRefGoogle Scholar
  2. Chapin, E., Chen, C.W., 2009. Airborne along-track interferometry for GMTI. IEEE Aerosp. Electron. Syst. Mag., 24(5): 13–18. http://dx.doi.org/10.1109/maes.2009.5109948CrossRefGoogle Scholar
  3. Chen, C.W., 2004. Performance assessment of along-track interferometry for detecting ground moving targets. Proc. IEEE Radar Conf., 99–104. http://dx.doi.org/10.1109/nrc.2004.1316403Google Scholar
  4. Cumming, I.G., Wong, F.H., 2004. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House, London.Google Scholar
  5. Dall, J., Grinder-Pedersen, J., Madsen, S.N., 1997. Calibration of a high resolution airborne 3D SAR. IEEE Int. Geoscience and Remote Sensing Symp., p.1018–1021. http://dx.doi.org/10.1109/igarss.1997.615329Google Scholar
  6. Fischer, J., Baumgartner, S., Reigber, A., et al., 2008. Geometric, radiometric, polarimetric and along-track interferometric calibration of the new F-SAR system of DLR in X-Band. 7th European Conf. on Synthetic Aperture Radar, p.109–112.Google Scholar
  7. Fornaro, G., 1999. Trajectory deviations in airborne SAR: analysis and compensatin. IEEE Trans. Aerosp. Electron. Syst., 35(3): 997–1009. http://dx.doi.org/10.1109/7.784069CrossRefGoogle Scholar
  8. Fornaro, G., Franceschetti, G., Perna, S., 2005. Motion compemsatiom errors: effects on the accuracy of airborne SAR images. IEEE Trans. Aerosp. Electr. Syst., 41(4): 1338–1352. http://dx.doi.org/10.1109/taes.2005.1561888CrossRefGoogle Scholar
  9. Fornaro, G., Franceschetti, G., Perna, S., 2006. On centerbeam approximation in SAR motion compensation. IEEE Geosci. Remote Sens. Lett., 3(2): 276–280. http://dx.doi.org/10.1109/lgrs.2005.863391CrossRefGoogle Scholar
  10. Gierull, C.H., 2003. Digital Channel Balancing of Along-Track Interferometric SAR Data. Technical Memorandum No. DRDC-OTTAWA-TM-2003-024, Defence R&D Canada-Ottawa.Google Scholar
  11. Glerull, C.H., 2002. Moving Target Detection with Along-Track SAR Interferometry: a Theoretical Analysis. Technical Memorandum No. DRDC-OTTAWA-TR-2002-084, Defence R&D Canada-Ottawa.Google Scholar
  12. Goldstein, R.M., Zebker, H.A., 1987. Interferometric radar measurement of ocean surface currents. Nature, 328(6132): 707–709. http://dx.doi.org/10.1038/328707a0CrossRefGoogle Scholar
  13. Gonzalez, J.H., Bachmann, M., Krieger, G., et al., 2010. Development of the TanDEM-X calibration concept: analysis of systematic errors. IEEE Trans. Geosci. Remote Sens., 48(2): 716–726. http://dx.doi.org/10.1109/tgrs.2009.2034980CrossRefGoogle Scholar
  14. Hirsch, O., 2001. Calibration of an airborne along-track interferometric SAR system for accurate measurement of velocities. IEEE Int. Geoscience and Remote Sensing Symp., p.558–560. http://dx.doi.org/10.1109/igarss.2001.976221Google Scholar
  15. Imel, D.A., 2002. AIRSAR along-track interferometry data. AIRSAR Earth Science and Applications Workshop, p.1–58.Google Scholar
  16. Li, F.F., Qiu, X.L., Meng, D.D., et al., 2014. Effects of motion compensation errors on performance of airborne dualantenna InSAR. J. Electr. Inform. Technol., 35(3): 559–567 (in Chinese). http://dx.doi.org/10.3724/sp.j.1146.2012.00850CrossRefGoogle Scholar
  17. Madsen, S.N., Skou, N., Woelders, K., et al., 1996. EMISAR single pass topographic SAR interferometer modes. IEEE Geoscience and Remote Sensing Symp., p.674–676. http://dx.doi.org/10.1109/igarss.1996.516439Google Scholar
  18. Marom, M., Goldstein, R.M., Thornton, E.B., et al., 1990. Remote sensing of ocean wave spectra by interferometric synthetic aperture radar. Nature, 345(6278): 793–795. http://dx.doi.org/10.1038/345793a0CrossRefGoogle Scholar
  19. Moccia, A., Rufino, G., 2001. Spaceborne along-track SAR interferometry: performance analysis and mission scenarios. IEEE Trans. Aerosp. Electron. Syst., 37(1): 199–213. http://dx.doi.org/10.1109/7.913679CrossRefGoogle Scholar
  20. Moreira, A., Huang, Y.H., 1994. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Trans. Geosci. Remote Sens., 32(5): 1029–1040. http://dx.doi.org/10.1109/36.312891CrossRefGoogle Scholar
  21. Raney, R.K., 1971. Synthetic aperture imaging radar and moving targets. IEEE Trans. Aerosp. Electron. Syst., AES-7(3):499–505. http://dx.doi.org/10.1109/taes.1971.310292CrossRefGoogle Scholar
  22. Reigber, A., Alivizatos, E., Potsis, A., et al., 2006. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation. IEE Proc.-Radar Sonar Navig., 153(3): 301–310. http://dx.doi.org/10.1049/ip-rsn:20045087CrossRefGoogle Scholar
  23. Rosen, P.A., Hensley, S., Joughin, I.R., et al., 2000. Synthetic aperture radar interferometry. Proc. IEEE, 88(3): 333–382. http://dx.doi.org/10.1109/5.838084CrossRefGoogle Scholar
  24. Zebker, H.A., Villasenor, J., 1992. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens., 30(5): 950–959. http://dx.doi.org/10.1109/36.175330CrossRefGoogle Scholar
  25. Zhang, H., Hong, J., 2013. Sensitivity analysis of along-track interferometric synthetic aperture radar (ATI-SAR) in the presence of squint. IET Int. Radar Conf., p.1–5. http://dx.doi.org/10.1049/cp.2013.0181Google Scholar
  26. Zhang, Y.H., 2006. Along Track Interferometry Synthetic Aperture Radar Techniques for Ground Moving Target Detection. Technical Report No. AFRL-SN-RS-TR-2005-410, Stiefvater Consultants.Google Scholar
  27. Zink, M., Krieger, G., Fiedler, H., et al., 2007. The TanDEMX mission: overview and status. IEEE Int. Geoscience and Remote Sensing Symp., p.3944–3947. http://dx.doi.org/10.1109/igarss.2007.4423711Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hui Zhang
    • 1
    • 2
    • 3
  • Jun Hong
    • 1
  • Xiao-lan Qiu
    • 1
    • 3
  • Ji-chuan Li
    • 4
  • Fang-fang Li
    • 1
    • 3
  • Feng Ming
    • 1
  1. 1.Institute of ElectronicsChinese Academy of SciencesBeijingChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Technology in Geo-spatial Information Processing and Application SystemsBeijingChina
  4. 4.Science and Technology on Millimeter-Wave LaboratoryBeijingChina

Personalised recommendations