Skip to main content
Log in

A performance analysis of multi-satellite joint geolocation

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Determining the position of an emitter on Earth by using a satellite cluster has many important applications, such as in navigation, surveillance, and remote sensing. However, in realistic situations, a number of factors, such as errors in the measurement of signal parameters, uncertainties regarding the position of satellites, and errors in the location of calibration sources, are known to degrade the accuracy of target localization in satellite geolocation systems. We systematically analyze the performance of multi-satellite joint geolocation based on time difference of arrival (TDOA) measurements. The theoretical analysis starts with Cramér–Rao bound (CRB) derivations for four localization scenarios under an altitude constraint and Gaussian noise assumption. In scenario 1, only the TDOA measurement errors of the emitting source are considered and the satellite positions are assumed to be perfectly estimated. In scenario 2, both the TDOA measurement errors and satellite position uncertainties are taken into account. Scenario 3 assumes that some calibration sources with accurate position information are used to mitigate the influence of satellite position perturbations. In scenario 4, several calibration sources at inaccurate locations are used to alleviate satellite position errors in target localization. Through comparing the CRBs of the four localization scenarios, some valuable’s insights are gained into the effects of various error sources on the estimation performance. Two kinds of location mean-square errors (MSE) expressions under the altitude constraint are derived through first-order perturbation analysis and the Lagrange method. The first location MSE provides the theoretical prediction when an estimator assumes that the satellite locations are accurate but in fact have errors. The second location MSE provides the localization accuracy if an estimator assumes that the known calibration source locations are precise while in fact erroneous. Simulation results are included to verify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bardelli, R., Haworth, D., Smith, N., 1995. Interference lo-calization for the EUTELSAT satellite system. Proc. IEEE Int. Conf. on Globecom, p.1641–1651. http://dx.doi.org/10.1109/GLOCOM.1995.502690

    Google Scholar 

  • Cheung, K.W., So, H.C., Ma, W.K., et al., 2006. A constrained least squares approach to mobile positioning: algorithms and optimality. EURASIP J. Appl. Signal Process., 2006:1–23. http://dx.doi.org/10.1155/ASP/2006/20858

    Google Scholar 

  • Ding, W., 2014. The geolocation performance analysis for the constrained Taylor-series iteration in the presence of saellite orbit perturbations. Sci. China Inform. Sci., 44(2):231–253. http://dx.doi.org/10.1360/112013-121

    Google Scholar 

  • Ha, T.T., Robertson, R.C., 1987. Geostationary satellite nav-igation systems. IEEE Trans. Aerosp. Electron. Syst., 23(2):247–254. http://dx.doi.org/10.1109/TAES.1987.313379

    Article  Google Scholar 

  • Haworth, D.P., Smith, N.G., Bardelli, R., et al., 1997. Inter-ference localization for EUTELSAT satellites—the first European transmitter location system. Int. J. Satell. Commun., 15(4):155–183. http://dx.doi.org/10.1002/(SICI)1099-1247(199707/08)15:4<155::AID-SAT577>3.0.CO;2-U

    Article  Google Scholar 

  • Ho, K.C., Xu, W.W., 2004. An accurate algebraic solution for moving source location using TDOA and FDOA meas-urements. IEEE Trans. Signal Process., 52(9):2453–2463. http://dx.doi.org/10.1109/TSP.2004.831921

    Article  MathSciNet  Google Scholar 

  • Ho, K.C., Yang, L., 2008. On the use of a calibration emitter for source localization in the presence of sensor position uncertainty. IEEE Trans. Signal Process., 56(12):5758–5772. http://dx.doi.org/10.1109/TSP.2008.929870

    Article  MathSciNet  Google Scholar 

  • Ho, K.C., Lu, X.N., Kovavisaruch, L., 2007. Source localiza-tion using TDOA and FDOA measurements in the pres-ence of receiver location errors: analysis and solution. IEEE Trans. Signal Process., 55(2):684–696. http://dx.doi.org/10.1109/TSP.2006.885744

    Article  MathSciNet  Google Scholar 

  • Ho, K.C., Chan, Y.T., 1993. Solution and performance analy-sis of geolocation by TDOA. IEEE Trans. Aerosp. Elec-tron. Syst., 29(4):1311–1322. http://dx.doi.org/10.1109/7.259534

    Article  Google Scholar 

  • Ho, K.C., Chan, Y.T., 1997. Geolocation of a known altitude object from TDOA and FDOA measurements. IEEE Trans. Aerosp. Electron. Syst., 33(3):770–783. http://dx.doi.org/10.1109/7.599239

    Article  Google Scholar 

  • Huang, Y., Benesty, J., Elko, G.W., et al., 2001. Real-time passive source localization: a practical linear-correction least-squares approach. IEEE Trans. Speech Audio Pro-cess., 9(8):943–956. http://dx.doi.org/10.1109/89.966097

    Article  Google Scholar 

  • Kovavisaruch, L., Ho, K.C., 2005. Modified Taylor-series method for source and receiver localization using TDOA measurements with erroneous receiver positions. Proc. IEEE Int. Symp. on Circuits and Systems, p.2295–2298. http://dx.doi.org/10.1109/ISCAS.2005.1465082

    Google Scholar 

  • Lee, K.E., Ahn, D.M., Lee, Y.J., et al., 2000. A total squares algorithm for the source location estimation using GEO satellites. Proc. 21st Century Military Communications Conf., p.271–275. http://dx.doi.org/10.1109/MILCOM.2000.904954

    Google Scholar 

  • Lu, X.N., Ho, K.C., 2006a. Taylor-series technique for source localization using AOAs in the presence of sensor loca-tion errors. Proc. 4th IEEE Workshop on Sensor Array and Multichannel Processing, p.190–194. http://dx.doi.org/10.1109/SAM.2006.1706119

    Google Scholar 

  • Lu, X.N., Ho, K.C., 2006b. Analysis of the degradation in source location accuracy in the presence of sensor loca-tion error. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.925–928. http://dx.doi.org/10.1109/ICASSP.2006.1661121

    Google Scholar 

  • Marzetta, T.L., 1993. A simple derivation of the constrained multiple parameter Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal Process., 41(6):2247–2249. http://dx.doi.org/10.1109/78.218151

    Article  MathSciNet  Google Scholar 

  • Mason, J., 2004. Algebraic two-satellite TOA/FOA position solution on an ellipsoidal Earth. IEEE Trans. Aerosp. Electron. Syst., 40(3):1087–1092. http://dx.doi.org/10.1109/TAES.2004.1337476

    Article  Google Scholar 

  • Mušicki, D., Koch, W., 2008. Geolocation using TDOA and FDOA measurements. Proc. 11th IEEE Int. Conf. on In-formation Fusion, p.1–8.

    Google Scholar 

  • Mušicki, D., Kaune, R., Koch, W., 2010. Mobile emitter geo-location and tracking using TDOA and FDOA meas-urements. IEEE Trans. Signal Process., 58(3):1863–1874. http://dx.doi.org/10.1109/TSP.2009.2037075

    Article  MathSciNet  Google Scholar 

  • Niezgoda, G.H., Ho, K.C., 1994. Geolocalization by combined range difference and range rate difference measurements. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.357–360. http://dx.doi.org/10.1109/ICASSP.1994.389616

    Google Scholar 

  • Pattison, T., Chou, S.I., 2000. Sensitivity analysis of dual-satellite geolocation. IEEE Trans. Aerosp. Electron. Syst., 36(1):56–71. http://dx.doi.org/10.1109/7.826312

    Article  Google Scholar 

  • Witzgall, H., 2014. Ground vehicle Doppler geolocation. Proc. IEEE Int. Conf. on Aerospace, p.1–8. http://dx.doi.org/10.1109/AERO.2014.6836173

    Google Scholar 

  • Wu, S.L., Luo, J.Q., 2009. Influence of position error on TDOA and FDOA measuring of dual-satellite passive location system. Proc. 3rd IEEE Int. Symp. on Microwave, Antenna, Propagation and EMC Technologies for Wire-less Communications, p.293–296. http://dx.doi.org/10.1109/MAPE.2009.5355928

    Google Scholar 

  • Yang, K., An, J.P., Bu, X.Y., et al., 2010. Constrained total least-squares location algorithm using time-difference-of-arrival measurements. IEEE Trans. Veh. Technol., 59(3):1558–1562. http://dx.doi.org/10.1109/TVT.2009.2037509

    Article  Google Scholar 

  • Yang, K.H., Jiang, L.Z., Luo, Z.Q., 2011. Efficient semidefi-nite relaxation for robust geolocation of unknown emitter by a satellite cluster using TDOA and FDOA measure-ments. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.2584–2587. http://dx.doi.org/10.1109/ICASSP.2011.5947013

    Google Scholar 

  • Yang, L., Ho, K.C., 2010a. On using multiple calibration emitters and their geometric effects for removing sensor position errors in TDOA localization. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.14–19. http://dx.doi.org/10.1109/ICASSP.2010.5496241

    Google Scholar 

  • Yang, L., Ho, K.C., 2010b. Alleviating sensor position error in source localization using calibration emitters at inaccu-rate locations. IEEE Trans. Signal Process., 58(1):67–83. http://dx.doi.org/10.1109/TSP.2009.2028947

    Article  MathSciNet  Google Scholar 

  • Yu, H., Huang, G., Gao, J., 2012. Constrained total least-squares localization algorithm using time difference of arrival and frequency difference of arrival measure-ments with sensor location uncertainties. IET Radar So-nar Navig., 6(9):891–899. http://dx.doi.org/10.1049/iet-rsn.2011.0205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Wang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61201381), the Future Development Foundation of Zhengzhou Information Science and Technology Institute (No. YP12JJ202057), China Postdoctoral Science Foundation (No. 2016M592989), and the Outstanding Youth Foundation of Information Engineering University (No. 2016603201)

ORCID: Ding WANG, http://orcid.org/0000-0001-6533-9206

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wei, S. & Wu, Y. A performance analysis of multi-satellite joint geolocation. Frontiers Inf Technol Electronic Eng 17, 1360–1387 (2016). https://doi.org/10.1631/FITEE.1500285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500285

Key words

CLC number

Navigation