A novel approach of noise statistics estimate using H filter in target tracking



Noise statistics are essential for estimation performance. In practical situations, however, a priori information of noise statistics is often imperfect. Previous work on noise statistics identification in linear systems still requires initial prior knowledge of the noise. A novel approach is presented in this paper to solve this paradox. First, we apply the H filter to obtain the system state estimates without the common assumptions about the noise in conventional adaptive filters. Then by applying state estimates obtained from the H filter, better estimates of the noise mean and covariance can be achieved, which can improve the performance of estimation. The proposed approach makes the best use of the system knowledge without a priori information with modest computation cost, which makes it possible to be applied online. Finally, numerical examples are presented to show the efficiency of this approach.


Noise estimate H filter Target tracking 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alouani, A.T., Blair, W.D., 1993. Use of a kinematic constraint in tracking constant speed, maneuvering targets. IEEE Trans. Autom. Contr., 38(7):1107–1111. http://dx.doi.org/10.1109/9.231465MathSciNetCrossRefGoogle Scholar
  2. Alspach, D.L., Scharf, L.L., Abiri, A., 1974. A Bayesian solution to the problem of state estimation in an unknown noise environment. Int. J. Contr., 19(2):265–287. http://dx.doi.org/10.1080/00207177408932628MathSciNetCrossRefMATHGoogle Scholar
  3. Assa, A., Janabi-Sharifi, F., 2014. A robust vision-based sensor fusion approach for real-time pose estimation. IEEE Trans. Cybern., 44(2):217–227. http://dx.doi.org/10.1109/TCYB.2013.2252339CrossRefGoogle Scholar
  4. Banavar, R.N., 1992. A Game Theoretic Approach to Linear Dynamic Estimation. PhD Thesis, Texas University, Austin, USA.Google Scholar
  5. Bavdekar, V.A., Deshpande, A.P., Patwardhan, S.C., 2011. Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. J. Process Contr., 21(4):585–601. http://dx.doi.org/10.1016/j.jprocont.2011.01.001CrossRefGoogle Scholar
  6. Bélanger, P.R., 1974. Estimation of noise covariance matrices for a linear time-varying stochastic process. Automatica, 10(3):267–275. http://dx.doi.org/10.1016/0005-1098(74)90037-5MathSciNetCrossRefMATHGoogle Scholar
  7. Bohlin, T., 1976. Four cases of identification of changing systems. Math. Sci. Eng., 126:441–518. http://dx.doi.org/10.1016/S0076-5392(08)60878-4CrossRefGoogle Scholar
  8. Carew, B., Belanger, P., 1973. Identification of optimum filter steady-state gain for systems with unknown noise covariances. IEEE Trans. Autom. Contr., 18(6):582–587. http://dx.doi.org/10.1109/TAC.1973.1100420MathSciNetCrossRefMATHGoogle Scholar
  9. Duník, J., Straka, O., Šimandl, M., 2015. Estimation of noise covariance matrices for linear systems with nonlinear measurements. Proc. 17th Symp. on System Identification, p.1130–1135. http://dx.doi.org/10.1016/j.ifacol.2015.12.283Google Scholar
  10. Feng, B., Fu, M., Ma, H., et al., 2014. Kalman filter with recursive covariance estimation—sequentially estimating process noise covariance. IEEE Trans. Ind. Electron., 61(11):6253–6263. http://dx.doi.org/10.1109/TIE.2014.2301756CrossRefGoogle Scholar
  11. Fu, X., Jia, Y., Du, J., et al., 2013. H filtering with diagonal interacting multiple model algorithm for maneuvering target tracking. Proc. American Control Conf., p.6187–6192.Google Scholar
  12. Gales, M.J.F., 2009. Acoustic modelling for speech recognition: hidden Markov models and beyond? Proc. IEEE Workshop on Automatic Speech Recognition & Understanding, p.44. http://dx.doi.org/10.1109/ASRU.2009.5372953Google Scholar
  13. Jiang, T.Y., Liu, M.Q., Wang, X., et al., 2014. An efficient measurement-driven sequential Monte Carlo multi- Bernoulli filter for multi-target filtering. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(6):445–457. http://dx.doi.org/10.1631/jzus.C1400025CrossRefGoogle Scholar
  14. Jwo, D.J., Huang, C.M., 2007. An adaptive fuzzy strong tracking Kalman filter for GPS/INS navigation. Proc. 33rd Annual Conf. of the IEEE Industrial Electronics Society, p.2266–2271. http://dx.doi.org/10.1109/IECON.2007.4460302Google Scholar
  15. Li, W., Jia, Y., 2010. Distributed interacting multiple model H filtering fusion for multiplatform maneuvering target tracking in clutter. Signal Process., 90(5):1655–1668. http://dx.doi.org/10.1016/j.sigpro.2009.11.016CrossRefMATHGoogle Scholar
  16. Li, X.R., Bar-Shalom, Y., 1994. A recursive multiple model approach to noise identification. IEEE Trans. Aerosp. Electron. Syst., 30(3):671–684. http://dx.doi.org/10.1109/7.303738CrossRefGoogle Scholar
  17. Li, X.R., Jilkov, V.P., 2005. Survey of maneuvering target tracking. Part V: multiple-model methods. IEEE Trans. Aerosp. Electron. Syst., 41(4):1255–1321. http://dx.doi.org/10.1109/TAES.2005.1561886CrossRefGoogle Scholar
  18. Mazor, E., Averbuch, A., Bar-Shalom, Y., et al., 1998. Interacting multiple model methods in target tracking: a survey. IEEE Trans. Aerosp. Electron. Syst., 34(1):103–123. http://dx.doi.org/10.1109/7.640267CrossRefGoogle Scholar
  19. Mehra, R., 1972. Approaches to adaptive filtering. IEEE Trans. Autom. Contr., 17(5):693–698. http://dx.doi.org/10.1109/TAC.1972.1100100MathSciNetCrossRefMATHGoogle Scholar
  20. Myers, K., Tapley, B., 1976. Adaptive sequential estimation with unknown noise statistics. IEEE Trans. Autom. Contr., 21(4):520–523. http://dx.doi.org/10.1109/TAC.1976.1101260CrossRefMATHGoogle Scholar
  21. Odelson, B.J., Rajamani, M.R., Rawlings, J.B., 2006. A new autocovariance least-squares method for estimating noise covariances. Automatica, 42(2):303–308. http://dx.doi.org/10.1016/j.automatica.2005.09.006MathSciNetCrossRefMATHGoogle Scholar
  22. Rabiner, L.R., 1990. A tutorial on hidden Markov models and selected applications in speech recognition. In: Waibel, A., Lee, K.F. (Eds.), Readings in Speech Recognition. Morgan Kaufmann Publishers Inc., USA, p.267–296.Google Scholar
  23. Rawicz, P.L., 2000. H /H2/Kalman Filtering of Linear Dynamical Systems via Variational Techniques with Applications to Target Tracking. PhD Thesis, Drexel University, Philadelphia, USA.Google Scholar
  24. Shen, X., Deng, L., 1997. Game theory approach to discrete H filter design. IEEE Trans. Signal Process., 45(4):1092–1095. http://dx.doi.org/10.1109/78.564201CrossRefGoogle Scholar
  25. Simon, D., 2006. Optimal State Estimation: Kalman, H , and Nonlinear Approaches. Wiley, New York, USA.CrossRefGoogle Scholar
  26. Yadav, A., Naik, N., Ananthasayanam, M.R., et al., 2012. A constant gain Kalman filter approach to target tracking in wireless sensor networks. Proc. 7th IEEE Int. Conf. on Industrial and Information Systems, p.1–7. http://dx.doi.org/10.1109/ICIInfS.2012.6304803Google Scholar
  27. Yaesh, I., Shaked, U., 1991. A transfer function approach to the problems of discrete-time systems: H -optimal linear control and filtering. IEEE Trans. Autom. Contr., 36(11):1264–1271. http://dx.doi.org/10.1109/9.100935MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xie Wang
    • 1
    • 2
  • Mei-qin Liu
    • 1
    • 2
  • Zhen Fan
    • 2
  • Sen-lin Zhang
    • 2
  1. 1.State Key Laboratory of Industrial Control TechnologyZhejiang UniversityHangzhouChina
  2. 2.College of Electrical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations