Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts

  • He Hao
  • Wei-zhong Fei
  • Dong-min Miao
  • Meng-jia Jin
  • Jian-xin Shen


In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet shape optimization was used first to improve the torque characteristics using two-dimensional finite element analysis (FEA) in a permanent magnet synchronous generator with a common stator. The rotor step skewing technique was then employed to suppress the impacts of mechanical tolerances and defects, which further improved the torque quality of the machine. Comprehensive three-dimensional FEA was used to evaluate accurately the overall effects of stator radial ventilating air ducts and rotor step skewing on torque features. The influences of the radial ventilating ducts in the stator on torque characteristics, such as torque pulsation and average torque in the machine with and without rotor step skewing techniques, were comprehensively investigated using three-dimensional FEA. The results showed that stator radial ventilating air ducts could not only reduce the average torque but also increase the torque ripple in the machine. Furthermore, the torque ripple of the machine under certain load conditions may even be increased by rotor step skewing despite a reduction in cogging torque.


Permanent magnet synchronous generator (PMSG) Radial ventilating air duct Torque ripple Step skewing Magnet shape optimization Finite element analysis Wind power 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashabani, M., Mohamed, Y.A.R.I., 2011. Multiobjective shape optimization of segmented pole permanentmagnet synchronous machines with improved torque characteristics. IEEE Trans. Magn., 47(4):795–804. Scholar
  2. Atallah, K., Wang, J., Howe, D., 2003. Torque-ripple minimization in modular permanent-magnet brushless machines. IEEE Trans. Ind. Appl., 39(6):1689–1695. Scholar
  3. Bianchi, N., Bolognani, S., 2002. Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Trans. Ind. Appl., 38(5):1259–1265. Scholar
  4. Boukais, B., Zeroug, H., 2010. Magnet segmentation for commutation torque ripple reduction in a brushless DC motor drive. IEEE Trans. Magn., 46(11):3909–3919. Scholar
  5. Chen, H.S., Dorrell, D.G., Tsai, M.C., 2010. Design and operation of interior permanent-magnet motors with two axial segments and high rotor saliency. IEEE Trans. Magn., 46(9):3664–3675. Scholar
  6. Chen, N.N., Ho, S.L., Fu, W.N., 2010. Optimization of permanent magnet surface shapes of electric motors for minimization of cogging torque using FEM. IEEE Trans. Magn., 46(6):2478–2481. Scholar
  7. Chu, W.Q., Zhu, Z.Q., 2013. Reduction of on-load torque ripples in permanent magnet synchronous machines by improved skewing. IEEE Trans. Magn., 49(7):3822–3825. Scholar
  8. Fei, W.Z., Luk, P.C.K., 2009. An improved model for the back-EMF and cogging torque characteristics of a novel axial flux permanent magnet synchronous machine with a segmental laminated stator. IEEE Trans. Magn., 45(10):4609–4612. Scholar
  9. Fei, W.Z., Luk, P.C.K., 2010. A new technique of cogging torque suppression in direct-drive permanent-magnet brushless machines. IEEE Trans. Ind. Appl., 46(4):1332–1340. Scholar
  10. Fei, W.Z., Luk, P.C.K., 2012. Torque ripple reduction of a direct-drive permanent-magnet synchronous machine by material-efficient axial pole pairing. IEEE Trans. Ind. Electron., 59(6):2601–2611. Scholar
  11. Fei, W.Z., Luk, P.C.K., Shen, J.X., 2012. Torque analysis of permanent-magnet flux switching machines with rotor step skewing. IEEE Trans. Magn., 48(10):2664–2673. Scholar
  12. Fei, W.Z., Luk, P.C.K., Wu, D., et al., 2013. Approximate three-dimensional finite element analysis of large permanent magnet synchronous generators with stator radial ventilating ducts. 39th Annual Conf. of IEEE Industrial Electronics Society, p.7313–7318. Scholar
  13. Güemes, J.A., Iraolagoitia, A.A., Del Hoyo, J.I., et al., 2011. Torque analysis in permanent-magnet synchronous motors: a comparative study. IEEE Trans. Energy Conv., 26(1):55–63. Scholar
  14. Han, S.H., Jahns, T.M., Soong, W.L., et al., 2010. Torque ripple reduction in interior permanent magnet synchronous machines using stators with odd number of slots per pole pair. IEEE Trans. Energy Conv., 25(1):118–127. Scholar
  15. Islam, M.S., Mir, S., Sebastian, T., et al., 2005. Design consideration of sinusoidally excited permanent-magnet machines for low-torque-ripple applications. IEEE Trans. Ind. Appl., 41(4):955–962. Scholar
  16. Islam, R., Husain, I., Fardoun, A., et al., 2009. Permanentmagnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. IEEE Trans. Ind. Appl., 45(1):152–160. Scholar
  17. Jahns, T.M., Soong, W.L., 1996. Pulsating torque minimization techniques for permanent magnet AC motor drives—a review. IEEE Trans. Ind. Electron., 43(2):321–330. Scholar
  18. Lateb, R., Takorabet, N., Meibody-Tabar, F., 2006. Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors. IEEE Trans. Magn., 42(3):442–445. Scholar
  19. Li, T., Slemon, G., 1988. Reduction of cogging torque in permanent magnet motors. IEEE Trans. Magn., 24(6):2901–2903. Scholar
  20. Pang, Y., Zhu, Z.Q., Howe, D., 2005. Self-shielding magnetized vs. shaped parallel-magnetized PM brushless AC motors. KIEE Int. Trans. Electr. Mach. Energy Conv. Syst., 5-B(1):13–19.Google Scholar
  21. Pyrhonen, J., Ruuskanen, V., Nerg, J., et al., 2010. Permanent-magnet length effects in AC machines. IEEE Trans. Magn., 46(10):3783–3789. Scholar
  22. Ruuskanen, V., Nerg, J., Pyrhonen, J., 2011. Effect of lamination stack ends and radial cooling channels on noload voltage and inductances of permanent-magnet synchronous machines. IEEE Trans. Magn., 47(11):4643–4649. Scholar
  23. Ruuskanen, V., Nerg, J., Niemelä, M., et al., 2013. Effect of radial cooling ducts on the electromagnetic performance of the permanent magnet synchronous generators with double radial forced air cooling for direct-driven wind turbines. IEEE Trans. Magn., 49(6):2974–2981. Scholar
  24. Sopanen, J., Ruuskanen, V., Nerg, J., et al., 2011. Dynamic torque analysis of a wind turbine drive train including a direct-driven permanent-magnet generator. IEEE Trans. Ind. Electron., 58(9):3859–3867. Scholar
  25. Tapia, J.A., Pyrhonen, J., Puranen, J., et al., 2013. Optimal design of large permanent magnet synchronous generators. IEEE Trans. Magn., 49(1):642–650. Scholar
  26. Wang, Y., Jin, M.J., Fei, W.Z., et al., 2010. Cogging torque reduction in permanent magnet flux-switching machines by rotor teeth axial pairing. IET Electr. Power Appl., 4(7):500–506. Scholar
  27. Yang, Y., Wang, X., Zhang, R., et al., 2006. The optimization of pole arc coefficient to reduce cogging torque in surface-mounted permanent magnet motors. IEEE Trans. Magn., 42(4):1135–1138. Scholar
  28. Zhu, Z.Q., Howe, D., 2000. Influence of design parameters on cogging torque in permanent magnet machines. IEEE Trans. Energy Conv., 15(4):407–412. Scholar
  29. Zhu, Z.Q., Ruangsinchaiwanich, S., Ishak, D., et al., 2005. Analysis of cogging torque in brushless machines having nonuniformly distributed stator slots and stepped rotor magnets. IEEE Trans. Magn., 41(10):3910–3912. Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • He Hao
    • 1
  • Wei-zhong Fei
    • 2
  • Dong-min Miao
    • 1
  • Meng-jia Jin
    • 1
  • Jian-xin Shen
    • 1
  1. 1.College of Electrical EngineeringZhejiang UniversityHangzhouChina
  2. 2.Power Engineering CentreCranfield UniversityCranfieldUK

Personalised recommendations