Advertisement

Developing a power monitoring and protection system for the junction boxes of an experimental seafloor observatory network

  • Jun Wang
  • De-jun Li
  • Can-jun Yang
  • Zhi-feng Zhang
  • Bo Jin
  • Yan-hu Chen
Article
  • 90 Downloads

Abstract

A power monitoring and protection system based on an embedded processor was designed for the junction boxes (JBs) of an experimental seafloor observatory network in China. The system exhibits high reliability, fast response, and high real-time performance. A two-step power management method which uses metal-oxide-semiconductor field-effect transistors (MOSFETs) and a mechanical contactor in series was adopted to generate a reliable power switch, to limit surge currents and to facilitate automatic protection. Grounding fault diagnosis and environmental monitoring were conducted by designing a grounding fault detection circuit and by using selected sensors, respectively. The data collected from the JBs must be time-stamped for analysis and for correlation with other events and data. A highly precise system time, which is necessary for synchronizing the times within and across nodes, was generated through the IEEE 1588 (precision clock synchronization protocol for networked measurement and control systems) time synchronization method. In this method, time packets were exchanged between the grandmaster clock at the shore station and the slave clock module of the system. All the sections were verified individually in the laboratory prior to a sea trial. Finally, a subsystem for power monitoring and protection was integrated into the complete node system, installed in a frame, and deployed in the South China Sea. Results of the laboratory and sea trial experiments demonstrated that the developed system was effective, stable, reliable, and suitable for continuous deep-sea operation.

Keywords

Power monitoring and protection Embedded processor Seafloor observatory network IEEE 1588 Junction boxes 

CLC number

TP202 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguzzi, J., Mànuel, A., Condal, F., et al., 2011. The new seafloor observatory (OBSEA) for remote and long-term coastal ecosystem monitoring. Sensors, 11(6):5850–5872. [doi:10.3390/s110605850]CrossRefGoogle Scholar
  2. Barnes, C.R., Tunnicliffe, V., 2008. Building the world’s first multi-node cabled ocean observatories (NEPTUNE Canada and VENUS, Canada): science, realities, challenges and opportunities. Proc. OCEANS, p.1–8. [doi:10.1109/OCEANSKOBE.2008.4531076]Google Scholar
  3. Cena, G., Bertolotti, I.C., Scanzio, S., et al., 2012. Evaluation of EtherCAT distributed clock performance. IEEE Trans. Ind. Inform., 8(1):20–29. [doi:10.1109/TII.2011.2172434]CrossRefGoogle Scholar
  4. Chan, T., 2007. Analytical Methods for Power Monitoring and Control in an Underwater Observatory. PhD Thesis, University of Washington, USA.Google Scholar
  5. Chave, A.D., Waterworth, G., Maffei, A.R., et al., 2004. Cabled ocean observatory systems. Mar. Technol. Soc. J., 38(2):30–43. [doi:10.4031/002533204787522785]CrossRefGoogle Scholar
  6. Chen, Y.H., Yang, C.J., Li, D.J., et al., 2012. Development of a direct current power system for a multi-node cabled ocean observatory system. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(8):613–623. [doi:10.1631/jzus. C1100381]CrossRefMathSciNetGoogle Scholar
  7. Chen, Y.H., Yang, C.J., Li, D.J., et al., 2013. Study on 10 kV DC powered junction box for a cabled ocean observatory system. China Ocean Eng., 27(2):265–275. [doi:10.1007/s13344-013-0023-y]CrossRefMathSciNetGoogle Scholar
  8. del Río, J., Toma, D., Shariat-Panahi, S., et al., 2012. Precision timing in ocean sensor systems. Meas. Sci. Technol., 23(2):025801.1–025801.7. [doi:10.1088/0957-0233/23/2/025801]Google Scholar
  9. Dewey, R., Tunnicliffe, V., 2003. VENUS: future science on a coastal mid-depth observatory. Proc. 3rd Int. Workshop on Scientific Use of Submarine Cables and Related Technologies, p.232–233. [doi:10.1109/SSC.2003. 1224149]Google Scholar
  10. Han, J., Jeong, D., 2010. A practical implementation of IEEE 1588-2008 transparent clock for distributed measurement and control systems. IEEE Trans. Instrument. Meas., 59(2):433–439. [doi:10.1109/TIM.2009.2024371]CrossRefGoogle Scholar
  11. Howe, B.M., Chan, T., El-Sharkawi, M., et al., 2006. Power System for the MARS Ocean Cabled Observatory. Available from http://neptunepower.apl.washington.edu/publications/documents/psftmoco.pdf[Accessed on Mar. 9, 2015].Google Scholar
  12. Hsu, S.K., Lee, C.S., Shin, T.C., et al., 2007. Marine cable hosted observatory (MACHO) project in Taiwan. Proc. Symp. on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, p.305–307. [doi:10.1109/UT.2007.370808]CrossRefGoogle Scholar
  13. Ioannides, M.G., 2004. Design and implementation of PLCbased monitoring control system for induction motor. IEEE Trans. Energy Conv., 19(3):469–476. [doi:10.1109/TEC.2003.822303]CrossRefGoogle Scholar
  14. Kawaguchi, K., Kaneda, Y., Araki, E., 2008. The DONET: a real-time seafloor research infrastructure for the precise earthquake and tsunami monitoring. Proc. OCEANS, p.1–4. [doi:10.1109/OCEANSKOBE.2008.4530918]Google Scholar
  15. Lentz, S., Lécroart, A., 2009. Precision timing in the NEPTUNE Canada network. Proc. OCEANS, p.1–5. [doi:10. 1109/OCEANSE.2009.5278121]Google Scholar
  16. Li, D.J., Wang, G., Yang, C.J., et al., 2013. IEEE 1588 based time synchronization system for a seafloor observatory network. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(10):766–776. [doi:10.1631/jzus.C1300084]CrossRefMathSciNetGoogle Scholar
  17. Li, D.J., Wang, J., Zhang, Z.F., et al., 2015. Research and implementation of an IEEE 1588 PTP-based time synchronization system for Chinese experimental ocean observatory network. Mar. Technol. Soc. J., 49(1):47–58. [doi:10.4031/MTSJ.49.1.10]CrossRefGoogle Scholar
  18. Lu, S., 2006. Infrastructure, Operations, and Circuits Design of an Undersea Power System. PhD Thesis, University of Washington, USA.Google Scholar
  19. Milevsky, A., Walrod, J., 2008. Development and test of IEEE 1588 precision timing protocol for ocean observatory networks. Proc. OCEANS, p.1–7. [doi:10.1109/OCEANS.2008.5152029]Google Scholar
  20. Ouellette, M., Ji, K., Liu, S., et al., 2011. Using IEEE 1588 and boundary clocks for clock synchronization in telecom networks. IEEE Commun. Mag., 49(2):164–171. [doi:10.1109/MCOM.2011.5706325]CrossRefGoogle Scholar
  21. Pirenne, B., Guillemot, E., 2009. The data management system for the VENUS and NEPTUNE cabled observatories. Proc. OCEANS, p.1–4. [doi:10.1109/OCEANSE.2009. 5278187]Google Scholar
  22. Qi, J., Wang, L., Jia, H., et al., 2010. Design and performance evaluation of networked data acquisition systems based on EtherCAT. Proc. 2nd IEEE Int. Conf. on Information Management and Engineering, p.467–469. [doi:10. 1109/ICIME.2010.5478109]Google Scholar
  23. Sun, T., Zhao, B., Li, F., 2011. Application of WinCC in carplant monitoring system. Proc. Int. Symp. on Computer Science and Society, p.203–205. [doi:10.1109/ISCCS. 2011.63]Google Scholar
  24. Woodroffe, A.M., Pridie, S.W., Druce, G., 2008. The NEPTUNE Canada junction box-interfacing science instruments to sub-sea cabled observatories. Proc. OCEANS, p.1–5. [doi:10.1109/OCEANSKOBE.2008.4531021]Google Scholar
  25. Yu, Y., Xu, H., Jiang, E., 2011. The primary research of the junction box based seafloor observatory remote control system. Proc. Int. Conf. on Multimedia Technology, p.3750–3753. [doi:10.1109/ICMT.2011.6002721]Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jun Wang
    • 1
  • De-jun Li
    • 1
  • Can-jun Yang
    • 1
  • Zhi-feng Zhang
    • 1
  • Bo Jin
    • 1
  • Yan-hu Chen
    • 1
  1. 1.State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhouChina

Personalised recommendations