Advertisement

Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication

Article

Abstract

Quantum-dot cellular automata (QCA) is an emerging area of research in reversible computing. It can be used to design nanoscale circuits. In nanocommunication, the detection and correction of errors in a received message is a major factor. Besides, device density and power dissipation are the key issues in the nanocommunication architecture. For the first time, QCA-based designs of the reversible low-power odd parity generator and odd parity checker using the Feynman gate have been achieved in this study. Using the proposed parity generator and parity checker circuit, a nanocommunication architecture is proposed. The detection of errors in the received message during transmission is also explored. The proposed QCA Feynman gate outshines the existing ones in terms of area, cell count, and delay. The quantum costs of the proposed conventional reversible circuits and their QCA layouts are calculated and compared, which establishes that the proposed QCA circuits have very low quantum cost compared to conventional designs. The energy dissipation by the layouts is estimated, which ensures the possibility of QCA nano-device serving as an alternative platform for the implementation of reversible circuits. The stability of the proposed circuits under thermal randomness is analyzed, showing the operational efficiency of the circuits. The simulation results of the proposed design are tested with theoretical values, showing the accuracy of the circuits. The proposed circuits can be used to design more complex low-power nanoscale lossless nanocommunication architecture such as nano-transmitters and nano-receivers.

Key words

Quantum-dot cellular automata (QCA) Parity generator Parity checker Feynman gate Nanocommunication Power dissipation 

CLC number

TN91 

References

  1. Aghababa, H., Forouzandeh, B., Afzali-Kusha, A., 2012. High-performance low-leakage regions of nano-scaled CMOS digital gates under variations of threshold voltage and mobility. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(6):460–471. http://dx.doi.org/10.1631/jzus.C1100273CrossRefGoogle Scholar
  2. Agrawal, P., Ghosh, B., 2015. Innovative design methodologies in quantum-dot cellular automata. Int. J. Circ. Theory Appl., 43(2):253–262. http://dx.doi.org/10.1002/cta.1936CrossRefGoogle Scholar
  3. Akter, R., Islam, N., Waheed, S., 2015. Implementation of reversible logic gate in quantum dot cellular automata. Int. J. Comput. Appl., 109(1):41–44. http://dx.doi.org/10.5120/19155-0591Google Scholar
  4. Biswas, P., Gupta, N., Patidar, N., 2014. Basic reversible logic gates and its QCA implementation. Int. J. Eng. Res. Appl., 4(6):12–16.Google Scholar
  5. Das, J.C., De, D., 2012. Quantum Dot-Cellular Automata based cipher text design for nano-communication. Int. Conf. on Radar, Communication and Computing, p.224–229. http://dx.doi.org/10.1109/ICRCC.2012.6450583Google Scholar
  6. Das, J.C., De, D., 2015a. Reversible binary to grey and grey to binary code converter using QCA. IETE J. Res., 61(3):223–229. http://dx.doi.org/10.1080/03772063.2015.1018845CrossRefGoogle Scholar
  7. Das, J.C., De, D., 2015b. Reversible comparator design using quantum dot-cellular automata. IETE J. Res., in press. http://dx.doi.org/10.1080/03772063.2015.1088407Google Scholar
  8. Das, J.C., Debnath, B., De, D., 2015. Image steganography using quantum dot cellular automata. Quant. Matter, 4(5):504–517. http://dx.doi.org/10.1166/qm.2015.1225CrossRefGoogle Scholar
  9. Das, K., De, D., 2010. Characterization, test and logic synthesis of novel conservative & reversible logic gates for QCA. Int. J. Nanosci., 9(3):201–214. http://dx.doi.org/10.1142/S0219581X10006594CrossRefGoogle Scholar
  10. Das, K., De, D., 2011. Characterization, applicability and defect analysis for tiles nanostructure of quantum dot cellular automata. Mol. Simul., 37(3):210–225. http://dx.doi.org/10.1080/08927022.2010.536543CrossRefGoogle Scholar
  11. Das, K., De, D., De, M., 2013. Realisation of semiconductor ternary quantum dot cellular automata. IET Micro Nano Lett., 8(5):258–263. http://dx.doi.org/10.1049/mnl.2012.0618CrossRefGoogle Scholar
  12. Hung, W.N.N., Song, X., Yang, G., et al., 2006. Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 25(9):1652–1663. http://dx.doi.org/10.1109/TCAD.2005.858352CrossRefGoogle Scholar
  13. ITRS (International Technology Roadmap for Semiconductors), 2005. Available from http://www.itrs.net.
  14. Kunalan, D., Cheong, C.L., Chau, C.F., et al., 2014. Design of a 4-bit adder using reversible logic in quantum-dot cellular automata (QCA). IEEE Int. Conf. on Semiconductor Electronics, p.60–63. http://dx.doi.org/10.1109/SMELEC.2014.6920795Google Scholar
  15. Lent, C., Tougaw, P., 1997. A device architecture for computing with quantum dots. Proc. IEEE, 85(4):541–557. http://dx.doi.org/10.1109/5.573740CrossRefGoogle Scholar
  16. Liu, W., Srivastava, S., Lu, L., et al., 2012. Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans. Nanotechnol., 11(6):1239–1251. http://dx.doi.org/10.1109/TNANO.2012.2222663CrossRefGoogle Scholar
  17. Ma, X., 2008. Physical/Biochemical Inspired Computing Models for Reliable Nano-Technology Systems. PhD Thesis, Northeastern University, Boston, Massachusetts, United States.Google Scholar
  18. Mano, M.M., Ciletti, M.D., 2011. Digital Design with an Introduction to Verilog HDL (5th Ed.). Pearson Education, India.Google Scholar
  19. Mardiris, V.A., Karafyllidis, I.G., 2010. Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. Int. J. Circ. Theory Appl., 38(8):771–785. http://dx.doi.org/10.1002/cta.595MATHGoogle Scholar
  20. Mohammadi, Z., Mohammadi, M., 2014. Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quant. Inform. Process., 13(9):2127–2147. http://dx.doi.org/10.1007/s11128-014-0782-2MathSciNetCrossRefGoogle Scholar
  21. Orlov, A.O., Amlani, I., Bernstein, G.H., et al., 1997. Realization of a functional cell for quantum-dot cellular automata. Science, 277(5328):928–930. http://dx.doi.org/10.1126/science.277.5328.928CrossRefGoogle Scholar
  22. Pudi, V., Sridharan, K., 2011. Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE Trans. VLSI Syst., 19(9):1535–1548. http://dx.doi.org/10.1109/TVLSI.2010.2054120CrossRefGoogle Scholar
  23. Rahman, M.A., Khatun, F., Sarkar, A., et al., 2013. Design and implementation of Feynman gate in quantum-dot cellular automata (QCA). Int. J. Comput. Sci. Iss., 10(4):167–170.Google Scholar
  24. Shabeena, S., Pathak, J., 2015. Design and verification of reversible logic gates using quantum dot cellular automata. Int. J. Comput. Appl., 114(4):39–42. http://dx.doi.org/10.5120/19970-1846Google Scholar
  25. Sheikhfaal, S., Angizi, S., Sarmadi, S., et al., 2015. Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J., 46(6):462–471. http://dx.doi.org/10.1016/j.mejo.2015.03.016CrossRefGoogle Scholar
  26. Silva, D.S., Sardinha, L.H.B., Vieira, M.A.M., et al., 2015. Robust serial nanocommunication with QCA. IEEE Trans. Nanotechnol., 14(3):464–472. http://dx.doi.org/10.1109/TNANO.2015.2407696CrossRefGoogle Scholar
  27. Smolin, J.A., DiVincenzo, D.P., 1996. Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys. Rev. A, 53(4):2855–2856. http://dx.doi.org/10.1103/PhysRevA.53.2855CrossRefGoogle Scholar
  28. Srivastava, S., Asthana, A., Bhanja, S., et al., 2011. QCAPro—an error power estimation tool for QCA circuit design. Proc. IEEE Int. Symp. on Circuits and Systems, p.2377–2380. http://dx.doi.org/10.1109/ISCAS.2011.5938081Google Scholar
  29. Toffoli, T., 1980. Reversible Computing. Tech Memo MIT/LCS/TM-151, MIT Lab for Computer Science.Google Scholar
  30. Walus, K., Dysart, T.J., Jullien, G.A., et al., 2004. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol., 3(1):26–31. http://dx.doi.org/10.1109/TNANO.2003.820815CrossRefGoogle Scholar
  31. Xiao, L.R., Chen, X.X., Ying, S.Y., 2012. Design of dual-edge triggered flip-flops based on quantum-dot cellular automata. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(5):385–392. http://dx.doi.org/10.1631/jzus.C1100287CrossRefGoogle Scholar
  32. Yang, X., Cai, L., Huang, H., et al., 2012. A comparative analysis and design of quantum-dot cellular automata memory cell architecture. Int. J. Circ. Theory Appl., 40(1):93–103. http://dx.doi.org/10.1002/cta.710CrossRefGoogle Scholar
  33. Zhang, R., Walus, K., Wang, W., et al., 2004. A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol., 3(4):443–450. http://dx.doi.org/10.1109/TNANO.2004.834177CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringWest Bengal University of TechnologyKolkataIndia
  2. 2.Department of PhysicsUniversity of Western AustraliaCrawley WAAustralia

Personalised recommendations