Advertisement

Urban landscape classification using Chinese advanced high-resolution satellite imagery and an object-oriented multi-variable model

  • Li-gang Ma
  • Jin-song Deng
  • Huai Yang
  • Yang Hong
  • Ke Wang
Article

Abstract

The Chinese ZY-1 02C satellite is one of the most advanced high-resolution earth observation systems designed for terrestrial resource monitoring. Its capability for comprehensive landscape classification, especially in urban areas, has been under constant study. In view of the limited spectral resolution of the ZY-1 02C satellite (three bands), and the complexity and heterogeneity across urban environments, we attempt to test its performance of urban landscape classification by combining a multi-variable model with an object-oriented approach. The multiple variables including spectral reflection, texture, spatial autocorrelation, impervious surface fraction, vegetation, and geometry indexes were first calculated and selected using forward stepwise linear discriminant analysis and applied in the following object-oriented classification process. Comprehensive accuracy assessment which adopts traditional error matrices with stratified random samples and polygon area consistency (PAC) indexes was then conducted to examine the real area agreement between a classified polygon and its references. Results indicated an overall classification accuracy of 92.63% and a kappa statistic of 0.9124. Furthermore, the proposed PAC index showed that more than 82% of all polygons were correctly classified. Misclassification occurred mostly between residential area and barren/farmland. The presented method and the Chinese ZY-1 02C satellite imagery are robust and effective for urban landscape classification.

Key words

ZY-1 02C satellite Classification Urban Multi-variable model 

CLC number

TP751.1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.B., Sabol, D.E., Kapos, V., et al., 1995. Classification of multispectral images based on fractions of endmembers: application to land-cover change in the Brazilian Amazon. Remote Sens. Environ., 52(2):137–154. [doi:10.1016/0034-4257(94)00098-8]CrossRefGoogle Scholar
  2. Aguilar, M.A., Saldaña, M.M., Aguilar, F.J., 2013. GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments. Int. J. Remote Sens., 34(7):2583–2606. [doi:10.1080/01431161.2012.747018]CrossRefGoogle Scholar
  3. Carlson, T.N., Ripley, D.A., 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ., 62(3):241–252. [doi:10.1016/S0034-4257(97)00104-1]CrossRefGoogle Scholar
  4. Chen, Y., Shi, P., Fung, T., et al., 2007. Object-oriented classification for urban land cover mapping with ASTER imagery. Int. J. Remote Sens., 28(20):4645–4651. [doi:10.1080/01431160500444731]CrossRefGoogle Scholar
  5. Deng, J.S., Wang, K., Deng, Y.H., et al., 2008. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens., 29(16):4823–4838. [doi:10.1080/01431160801950162]CrossRefGoogle Scholar
  6. Durieux, L., Lagabrielle, E., Nelson, A., 2008. A method for monitoring building construction in urban sprawl areas using object-based analysis of Spot 5 images and existing GIS data. ISPRS J. Photogr. Remote Sens., 63(4):399–408. [doi:10.1016/j.isprsjprs.2008.01.005]CrossRefGoogle Scholar
  7. Han, N., Wang, K., Yu, L., et al., 2012. Integration of texture and landscape features into object-based classification for delineating Torreya using IKONOS imagery. Int. J. Remote Sens., 33(7):2003–2033. [doi:10.1080/01431161.2011.605084]CrossRefGoogle Scholar
  8. Hermosilla, T., Ruiz, L.A., Recio, J.A., et al., 2012. Assessing contextual descriptive features for plot-based classification of urban areas. Landscape Urban Plan., 106(1):124–137. [doi:10.1016/j.landurbplan.2012.02.008]CrossRefGoogle Scholar
  9. Hu, S., Wang, L., 2013. Automated urban land-use classification with remote sensing. Int. J. Remote Sens., 34(3):790–803. [doi:10.1080/01431161.2012.714510]CrossRefGoogle Scholar
  10. Jacquin, A., Misakova, L., Gay, M., 2008. A hybrid object-based classification approach for mapping urban sprawl in periurban environment. Landscape Urban Plan., 84(2):152–165. [doi:10.1016/j.landurbplan.2007.07.006]CrossRefGoogle Scholar
  11. Li, G., Weng, Q., 2005. Using Landsat ETM+ imagery to measure population density in Indianapolis, Indiana, USA. Photogr. Eng. Remote Sens., 71(8):947. [doi:10.14358/PERS.71.8.947]CrossRefGoogle Scholar
  12. Livingston, F., 2005. Implementation of Breiman’s random forest machine learning algorithm. ECE591Q Machine Learning Journal Paper.Google Scholar
  13. Lu, D., Weng, Q., 2006. Use of impervious surface in urban land-use classification. Remote Sens. Environ., 102(1–2):146–160. [doi:10.1016/j.rse.2006.02.010]CrossRefGoogle Scholar
  14. Lu, D., Weng, Q., 2007. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens., 28(5):823–870. [doi:10.1080/01431160600746456]CrossRefGoogle Scholar
  15. Mathieu, R., Freeman, C., Aryal, J., 2007. Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landscape Urban Plan., 81(3):179–192. [doi:10.1016/j.landurbplan.2006.11.009]CrossRefGoogle Scholar
  16. Novack, T., Esch, T., Kux, H., et al., 2011. Machine learning comparison between WorldView-2 and QuickBird-2-simulated imagery regarding object-based urban land cover classification. Remote Sens., 3(10):2263–2282. [doi:10.3390/rs3102263]CrossRefGoogle Scholar
  17. Pacifici, F., Chini, M., Emery, W.J., 2009. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ., 113(6):1276–1292. [doi:10.1016/j.rse.2009.02.014]CrossRefGoogle Scholar
  18. Ridd, M.K., 1995. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. Int. J. Remote Sens., 16(12):2165–2185. [doi:10.1080/01431169508954549]CrossRefGoogle Scholar
  19. Settle, J.J., Drake, N.A., 1993. Linear mixing and the estimation of ground cover proportions. Int. J. Remote Sens., 14(6):1159–1177. [doi:10.1080/01431169308904402]CrossRefGoogle Scholar
  20. Shaban, M.A., Dikshit, O., 2001. Improvement of classification in urban areas by the use of textural features: the case study of Lucknow City, Uttar Pradesh. Int. J. Remote Sens., 22(4):565–593. [doi:10.1080/01431160050505865]CrossRefGoogle Scholar
  21. Shahtahmassebi, A., Pan, Y., Lin, L., et al., 2014. Implications of land use policy on impervious surface cover change in Cixi County, Zhejiang Province, China. Cities, 39:21–36. [doi:10.1016/j.cities.2014.02.002]CrossRefGoogle Scholar
  22. Shanmugan, K.S., Narayanan, V., Frost, V.S., et al., 1981. Textural features for radar image analysis. IEEE Trans. Geosci. Remote Sens., GE-19(3):153–156. [doi:10.1109/TGRS.1981.350344]CrossRefGoogle Scholar
  23. Smith, M.O., Ustin, S.L., Adams, J.B., et al., 1990. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens. Environ., 31(1):1–26. [doi:10.1016/0034-4257(90)90074-V]CrossRefGoogle Scholar
  24. Trimble Germany GmbH, 2012. eCognition Developer 8.7.1:Reference Book. Documentation, T. Munich, Germany.Google Scholar
  25. Wu, B., Wang, X., Shen, H., et al., 2012. Feature selection based on max-min-associated indices for classification of remotely sensed imagery. Int. J. Remote Sens., 33(17):5492–5512. [doi:10.1080/01431161.2012.663111]CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Li-gang Ma
    • 1
  • Jin-song Deng
    • 1
    • 2
  • Huai Yang
    • 1
  • Yang Hong
    • 2
    • 3
  • Ke Wang
    • 1
  1. 1.Institute of Applied Remote Sensing & Information TechnologyZhejiang UniversityHangzhouChina
  2. 2.School of Civil Engineering and Environmental Sciences and School of MeteorologyUniversity of OklahomaNormanUSA
  3. 3.State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic EngineeringTsinghua UniversityBeijingChina

Personalised recommendations