Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 6, pp 528–540 | Cite as

Bacterial degradation of anthraquinone dyes

  • Hai-hong Li
  • Yang-tao Wang
  • Yang Wang
  • Hai-xia Wang
  • Kai-kai Sun
  • Zhen-mei LuEmail author
Review
  • 17 Downloads

Abstract

Anthraquinone dyes, which contain anthraquinone chromophore groups, are the second largest class of dyes after azo dyes and are used extensively in textile industries. The majority of these dyes are resistant to degradation because of their complex and stable structures; consequently, a large number of anthraquinone dyes find their way into the environment causing serious pollution. At present, the microbiological approach to treating printing and dyeing wastewater is considered to be an economical and feasible method, and reports regarding the bacterial degradation of anthraquinone dyes are increasing. This paper reviews the classification and structures of anthraquinone dyes, summarizes the types of degradative bacteria, and explores the possible mechanisms and influencing factors of bacterial anthraquinone dye degradation. Present research progress and existing problems are further discussed. Finally, future research directions and key points are presented.

Key words

Anthraquinone dyes Bacterial degradation Degradation mechanism Influencing factor 

细菌降解蒽醌染料研究进展

概要

本文综述了近年来细菌降解蒽醌染料的研究进展及机理, 以期为蒽醌染料废水的实际处理提供理 论依据。目前主要利用物理、化学及生物法处理 工业印染废水中的各种染料。与前两者相比, 生 物法具有经济且环保的特点。本文以蒽醌染料的 分类及结构为基础, 总结近年来已报道的蒽醌染 料高效降解细菌的多样性; 初步探讨细菌吸附、 降解蒽醌染料的机理与主要影响因素; 根据目前 的研究进展及存在问题, 提出细菌降解蒽醌染料 的研究方向。

关键词

蒽醌染料 细菌降解 降解机理 影响因素 

CLC number

Q93 

Notes

Acknowledgments

We thank Adebanjo O. OLUWAFUNMILAYO (College of Life Sciences, Zhejiang University, Hangzhou, China) for checking the English language.

References

  1. Ali H, 2010. Biodegradation of synthetic dyes—a review. Water Air Soil Pollut, 213(1–4):251–273.  https://doi.org/10.1007/s11270-010-0382-4 Google Scholar
  2. Andleeb S, Atiq N, Robson GD, et al., 2012. An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environ Sci Pollut Res, 19(5):1728–1737.  https://doi.org/10.1007/s11356-011-0687-x Google Scholar
  3. Balapure KH, Jain K, Chattaraj S, et al., 2014. Co-metabolic degradation of diazo dye—reactive blue 160 by enriched mixed cultures BDN. J Hazard Mater, 279:85–95.  https://doi.org/10.10167/j.jhazmat.2014.06.057 Google Scholar
  4. Banat IM, Nigam P, Singh D, et al., 1996. Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol, 58(3):217–227.  https://doi.org/10.1016/s0960-8524(96)00113-7 Google Scholar
  5. Cai JL, Huang Y, Li X, 2008. Cytological mechanisms of pollutants adsorption by biosorbent. Chin J Ecol, 27(6): 1005–1011 (in Chinese).Google Scholar
  6. Cerboneschi M, Corsi M, Bianchini R, et al., 2015. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli. Appl Microbiol Biotechnol, 99(19): 8235–8245.  https://doi.org/10.1007/s00253-015-6648-4 Google Scholar
  7. Chaudhari AU, Paul D, Dhotre D, et al., 2017. Effective biotransformation and detoxification of anthraquinone dye Reactive Blue 4 by using aerobic bacterial granules. Water Res, 122:603–613.  https://doi.org/10.1016/j.watres.2017.06.005 Google Scholar
  8. Chen CC, Liao HJ, Cheng CY, et al., 2007. Biodegradation of crystal violet by Pseudomonas putida. Biotechnol Lett, 29(3):391–396.  https://doi.org/10.1007/s10529-006-9265-6 Google Scholar
  9. Crini G, 2006. Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol, 97(9):1061–1085.  https://doi.org/10.1016/j.biortech.2005.05.001 Google Scholar
  10. Cui DZ, Zhang H, He RB, et al., 2016. The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by anaerobic sludge. Int J Environ Res Public Health, 13(11):1053.  https://doi.org/10.3390/ijerph13111053 Google Scholar
  11. Cui MH, Cui D, Gao L, et al., 2016. Azo dye decolorization in an up-flow bioelectrochemical reactor with domestic wastewater as a cost-effective yet highly efficient electron donor source. Water Res, 105:520–526.  https://doi.org/10.1016/j.watres.2016.09.027 Google Scholar
  12. Das A, Mishra S, 2017. Removal of textile dye Reactive Green-19 using bacterial consortium: process optimization using response surface methodology and kinetics study. J Environ Chem Eng, 5(1):612–627.  https://doi.org/10.1016/j.jece.2016.10.005 Google Scholar
  13. Deng DY, Guo J, Zeng GQ, et al., 2008. Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int Biodeterior Biodegrad, 62(3):263–269.  https://doi.org/10.1016/j.ibiod.2008.01.017 Google Scholar
  14. Du LN, Wang B, Li G, et al., 2012. Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: kinetics and sorption mechanisms. J Hazard Mater, 205–206:47–54.  https://doi.org/10.1016/j.jhazmat.2011.12.001 Google Scholar
  15. Duval J, Pecher V, Poujol M, et al., 2016. Research advances for the extraction, analysis and uses of anthraquinones: a review. Ind Crop Prod, 94:812–833.  https://doi.org/10.1016/j.indcrop.2016.09.056 Google Scholar
  16. Fan L, Zhu SN, Liu DQ, et al., 2008. Decolorization mechanism of 1-amino-4-bromoanthraquinone-2-sulfonic acid using Sphingomonas herbicidovorans FL. Dyes Pigments, 78(1):34–38.  https://doi.org/10.1016/j.dyepig.2007.10.004 Google Scholar
  17. Forss J, Lindh MV, Pinhassi J, et al., 2017. Microbial biotreatment of actual textile wastewater in a continuous sequential rice husk biofilter and the microbial community involved. PLoS ONE, 12(1):e0170562.  https://doi.org/10.1371/journal.pone.0170562 Google Scholar
  18. He JX, 2009. Dye Chemistry. China Textile & Apparel Press, Beijing, China (in Chinese).Google Scholar
  19. Hitz HR, Huber W, Reed RH, 1978. The absorption of dyes on activated sludge. J Soc Dyers Colour, 94(2):71–76.Google Scholar
  20. Holkar CR, Pandit AB, Pinjari DV, 2014. Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp.F NCIM 5545. Bioresour Technol, 173:342–351.  https://doi.org/10.1016/j.biortech.2014.09.108 Google Scholar
  21. Itoh K, Yatome C, Ogawa T, 1993. Biodegradation of anthraquinone dyes by Bacillus subtilis. Bull Environ Contam Toxicol, 50(4):522–527.  https://doi.org/10.1007/BF00191240 Google Scholar
  22. Jadhav SU, Kalme SD, Govindwar SP, 2008. Biodegradation of Methyl Red by Galactomyces geotrichum MTCC 1360. Int Biodeterior Biodegrad, 62(2):135–142.  https://doi.org/10.1016/j.ibiod.2007.12.010 Google Scholar
  23. Khataee A, Gholami P, Vahid B, et al., 2016. Heterogeneous sono-fenton process using pyrite nanorods prepared by non-thermal plasma for degradation of an anthraquinone dye. Ultrason Sonochem, 32:357–370.  https://doi.org/10.1016/j.ultsonch.2016.04.002 Google Scholar
  24. Kobayashi T, Taya H, Wilaipun P, et al., 2017. Malachite-green-removing properties of a bacterial strain isolated from fish ponds in Thailand. Fish Sci, 83(5):827–835.  https://doi.org/10.1007/s12562-017-1102-4 Google Scholar
  25. Kodam KM, Soojhawon I, Lokhande PD, et al., 2005. Microbial decolorization of reactive azo dyes under aerobic conditions. World J Microbiol Biotechnol, 21(3):367–370.  https://doi.org/10.1007/s11274-004-5957-z Google Scholar
  26. Krishnan J, Kishore AA, Suresh A, et al., 2017. Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions. Int Biodeterior Biodegrad, 119:16–27.  https://doi.org/10.1016/j.ibiod.2016.11.024 Google Scholar
  27. Kurade MB, Waghmode TR, Khandare RV, et al., 2016. Biodegradation and detoxification of textile dye Disperse Red 54 by Brevibacillus laterosporus and determination of its metabolic fate. J Biosci Bioeng, 121(4):442–449.  https://doi.org/10.1016/j.jbiosc.2015.08.014 Google Scholar
  28. Lee YH, Matthews RD, Pavlostathis SG, 2006. Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction conditions. Water Environ Res, 78(2):156–169.  https://doi.org/10.2175/106143005x89616 Google Scholar
  29. Linde D, Coscolín C, Liers C, et al., 2014. Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae. Protein Expr Purif, 103:28–37.  https://doi.org/10.1016/j.pep.2014.08.007 Google Scholar
  30. Liu N, Xie XH, Yang B, et al., 2017. Performance and microbial community structures of hydrolysis acidification process treating azo and anthraquinone dyes in different stages. Environ Sci Pollut Res, 24(1):252–263.  https://doi.org/10.1007/s11356-016-7705-y Google Scholar
  31. Lovato ME, Fiasconaro ML, Martin CA, 2017. Degradation and toxicity depletion of RB19 anthraquinone dye in water by ozone-based technologies. Water Sci Technol, 75(4):813–822.  https://doi.org/10.2166/wst.2016.501 Google Scholar
  32. Lu H, Guan XF, Wang J, et al., 2015. Enhanced biodecolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by Sphingomonas xenophaga with nutrient amendment. J Environ Sci, 27:124–130.  https://doi.org/10.1016/j.jes.2014.05.041 Google Scholar
  33. Mishra S, Maiti A, 2018. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review. Environ Sci Pollut Res, 25(9):8286–8314.  https://doi.org/10.1007/s11356-018-1273-2 Google Scholar
  34. Novotný C, Dias N, Kapanen A, et al., 2006. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. Chemosphere, 63(9):1436–1442.  https://doi.org/10.1016/j.chemosphere.2005.10.002 Google Scholar
  35. Ogola HJO, Kamiike T, Hashimoto N, et al., 2009. Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. Strain PCC 7120. Appl Environ Microbiol, 75(23):7509–7518.  https://doi.org/10.1128/aem.01121-09 Google Scholar
  36. Ogugbue CJ, Sawidis T, Oranusi NA, 2012. Bioremoval of chemically different synthetic dyes by Aeromonas hydrophila in simulated wastewater containing dyeing auxiliaries. Ann Microbiol, 62(3):1141–1153.  https://doi.org/10.1007/s13213-011-0354-y Google Scholar
  37. Olaganathan R, Patterson J, 2009. Decolorization of anthraquinone Vat Blue 4 by the free cells of an autochthonous bacterium, Bacillus subtilis. Water Sci Technol, 60(12): 3225–3232.  https://doi.org/10.2166/wst.2009.756 Google Scholar
  38. Otto B, Schlosser D, 2014. First laccase in green algae: purification and characterization of an extracellular phenol oxidase from Tetracystis aeria. Planta, 240(6):1225–1236.  https://doi.org/10.1007/s00425-014-2144-9 Google Scholar
  39. Park H, Mameda N, Choo KH, 2018. Catalytic metal oxide nanopowder composite Ti mesh for electrochemical oxidation of 1,4-dioxane and dyes. Chem Eng J, 345:233–241.  https://doi.org/10.1016/j.cej.2018.03.158 Google Scholar
  40. Parmar ND, Shukla SR, 2018. Biodegradation of anthraquinone based dye using an isolated strain Staphylococcus hominis subsp. hominis DSM 20328. Environ Prog Sustain Energy, 37(1):203–214.  https://doi.org/10.1002/ep.12655 Google Scholar
  41. Pearce CI, Lloyd JR, Guthrie JT, 2003. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments, 58(3):179–196.  https://doi.org/10.1016/s0143-7208(03)00064-0 Google Scholar
  42. Ren SZ, Guo J, Zeng GQ, et al., 2006. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl Microbiol Biotechnol, 72(6):1316–1321.  https://doi.org/10.1007/s00253-006-0418-2 Google Scholar
  43. Roberts JN, Singh R, Grigg JC, et al., 2011. Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry, 50(23):5108–5119.  https://doi.org/10.1021/bi200427h Google Scholar
  44. Rybczyńska-Tkaczyk K, Święciło A, Szychowski KA, et al., 2018. Comparative study of eco- and cytotoxicity during biotransformation of anthraquinone dye Alizarin Blue Black B in optimized cultures of microscopic fungi. Ecotoxicol Environ Safe, 147:776–787.  https://doi.org/10.1016/j.ecoenv.2017.09.037 Google Scholar
  45. Sadykov MR, Thomas VC, Marshall DD, et al., 2013. Inactivation of the Pta-AckA pathway causes cell death in Staphylococcus aureus. J Bacteriol, 195(13):3035–3044.  https://doi.org/10.1128/jb.00042-13 Google Scholar
  46. Samanta M, Mukherjee M, Ghorai UK, et al., 2018. Ultrasound assisted catalytic degradation of textile dye under the presence of reduced graphene oxide enveloped copper phthalocyanine nanotube. Appl Surf Sci, 449:113–121.  https://doi.org/10.1016/j.apsusc.2018.01.118 Google Scholar
  47. Šlosarčiková P, Novotný C, Malachová K, et al., 2017. Effect of yeasts on biodegradation potential of immobilized cultures of white rot fungi. Sci Total Environ, 589:146–152.  https://doi.org/10.1016/j.scitotenv.2017.02.079 Google Scholar
  48. Solís M, Solís A, Inés Pérez H, et al., 2012. Microbial decolouration of azo dyes: a review. Process Biochem, 47(12): 1723–1748.  https://doi.org/10.1016/j.procbio.2012.08.014 Google Scholar
  49. Tian JH, Pourcher AM, Peu P, 2016. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds. Lett Appl Microbiol, 63(1):30–37.  https://doi.org/10.1111/lam.12581 Google Scholar
  50. Uchida T, Sasaki M, Tanaka Y, et al., 2015. A dye-decolorizing peroxidase from Vibrio cholerae. Biochemistry, 54(43):6610–6621.  https://doi.org/10.1021/acs.biochem.5b00952 Google Scholar
  51. Velayutham K, Madhava AK, Pushparaj M, et al., 2018. Biodegradation of Remazol Brilliant Blue R using isolated bacterial culture (Staphylococcus sp. K2204). Environ Technol, 39(22):2900–2907.  https://doi.org/10.1080/09593330.2017.1369579 Google Scholar
  52. Walker GM, Weatherley LR, 2000. Biodegradation and biosorption of acid anthraquinone dye. Environ Pollut, 108(2):219–223.  https://doi.org/10.1016/s0269-7491(99)00187-6 Google Scholar
  53. Wang H, Su JQ, Zheng XW, et al., 2009. Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. Int Biodeterior Biodegrad, 63(4):395–399.  https://doi.org/10.1016/j.ibiod.2008.11.006 Google Scholar
  54. Wang J, Zhou Y, Li PL, et al., 2015. Effects of redox mediators on anaerobic degradation of phenol by Shewanella sp. XB. Appl Biochem Biotechnol, 175(6):3162–3172.  https://doi.org/10.1007/s12010-015-1490-9 Google Scholar
  55. Wang YP, Zhu K, Zheng YM, et al., 2011. The effect of recycling flux on the performance and microbial community composition of a biofilm hydrolytic-aerobic recycling process treating anthraquinone reactive dyes. Molecules, 16(12):9838–9849.  https://doi.org/10.3390/molecules16129838 Google Scholar
  56. Wang YZ, Pan Y, Zhu T, et al., 2018. Enhanced performance and microbial community analysis of bioelectrochemical system integrated with bio-contact oxidation reactor for treatment of wastewater containing azo dye. Sci Total Environ, 634:616–627.  https://doi.org/10.1016/j.scitotenv.2018.03.346 Google Scholar
  57. Xie XH, Liu N, Yang B, et al., 2016. Comparison of microbial community in hydrolysis acidification reactor depending on different structure dyes by Illumina MiSeq sequencing. Int Biodeterior Biodegrad, 111:14–21.  https://doi.org/10.1016/j.ibiod.2016.04.004 Google Scholar
  58. Xu MY, Guo J, Zeng GQ, et al., 2006. Decolorization of anthraquinone dye by Shewanella decolorationis S12. Appl Microbiol Biotechnol, 71(2):246–251.  https://doi.org/10.1007/s00253-005-0144-1 Google Scholar
  59. Yagub MT, Sen TK, Afroze S, et al., 2014. Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci, 209:172–184.  https://doi.org/10.1016/j.cis.2014.04.002 Google Scholar
  60. Yang F, Xie XH, Liu N, et al., 2017. On the effects and biotoxicity variations as a result of dye biodegradation by bacterial consortium FF. J Safet Environ, 17(2):654–659 (in Chinese).  https://doi.org/10.13637/j.issn.1009-6094.2017.02.049 Google Scholar
  61. Yu J, Wang XW, Yue PL, 2001. Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains. Water Res, 35(15):3579–3586.  https://doi.org/10.1016/s0043-1354(01)00100-2 Google Scholar
  62. Zhang H, Zhang S, He F, et al., 2016. Characterization of a manganese peroxidase from white-rot fungus Trametes sp. 48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. J Hazard Mater, 320:265–277.  https://doi.org/10.1016/j.jhazmat.2016.07.065 Google Scholar
  63. Zhang SC, Lu XJ, 2018. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent. Chemosphere, 206:777–783.  https://doi.org/10.1016/j.chemosphere.2018.05.073 Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Environmental and Chemical EngineeringXi’an Polytechnic UniversityShaanxiChina
  2. 2.MOE Laboratory of Biosystem Homeostasis and Protection, College of Life SciencesZhejiang UniversityHangzhouChina

Personalised recommendations