Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 10, pp 781–792 | Cite as

Regulation of bile acid metabolism-related signaling pathways by gut microbiota in diseases

  • Er-teng Jia
  • Zhi-yu Liu
  • Min Pan
  • Jia-feng Lu
  • Qin-yu GeEmail author
Review

Abstract

Over the past decade, there has been increasing attention on the interaction between microbiota and bile acid metabolism. Bile acids are not only involved in the metabolism of nutrients, but are also important in signal transduction for the regulation of host physiological activities. Microbial-regulated bile acid metabolism has been proven to affect many diseases, but there have not been many studies of disease regulation by microbial receptor signaling pathways. This review considers findings of recent research on the core roles of farnesoid X receptor (FXR), G protein-coupled bile acid receptor (TGR5), and vitamin D receptor (VDR) signaling pathways in microbial–host interactions in health and disease. Studying the relationship between these pathways can help us understand the pathogenesis of human diseases, and lead to new solutions for their treatments.

Key words

Gut microbiota Bile acid Farnesoid X receptor Vitamin D receptor Metabolism 

肠道微生物调节疾病中胆汁酸代谢相关的信号通路

概要

近十年来, 微生物与胆汁酸代谢的相互作用越来越受到关注。 胆汁酸不仅参与营养物质的代谢, 而且在调节宿主生理活动的信号转导中也起着重要作用。 已有研究表明, 微生物调控的胆汁酸代谢对许多疾病都有显著的影响, 但对微生物受体信号通路调控疾病的相关研究并不多。 本文综述了近年来有关法尼醇受体 (FXR)、 G 蛋白偶联胆汁酸受体 (TGR5) 和维生素 D 受体 (VDR) 信号通路在健康和疾病的微生物-宿主相互作用中的核心作用。 研究这些信号通路之间的关系, 有助于我们了解人类疾病的发病机制, 为人类疾病的治疗提供新的解决方案。

关键词

肠道微生物群 胆汁酸 法尼醇受体 维生素 D 受体 代谢 

CLC number

Q939.93 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Contributors

Er-teng JIA and Qin-yu GE designed the research. Er-teng JIA wrote the manuscript. Zhi-yu LIU, Min PAN, Jia-feng LU, and Qin-yu GE provided guidance on the writ¬ing of this review. All authors read and approved the final manuscript.

Compliance with ethics guidelines

Er-teng JIA, Zhi-yu LIU, Min PAN, Jia-feng LU, and Qin-yu GE declare that they have no conflict of interest.

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. Alexeev EE, Lanis JM, Kao DJ, et al., 2018. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am J Pathol, 188(5):1183–1194.  https://doi.org/10.1016/j.ajpath.2018.01.011 CrossRefGoogle Scholar
  2. Alnouti Y, 2009. Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol Sci, 108(2):225–246.  https://doi.org/10.1093/toxsci/kfn268 CrossRefGoogle Scholar
  3. Ananthanarayanan M, Balasubramanian N, Makishima M, et al., 2001. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem, 276(31):28857–28865.  https://doi.org/10.1074/jbc.M011610200 CrossRefGoogle Scholar
  4. Baggio LL, Drucker DJ, 2007. Biology of incretins: GLP-1 and GIP. Gastroenterology, 132(6):2131–2157.  https://doi.org/10.1053/j.gastro.2007.03.054 CrossRefGoogle Scholar
  5. Begley M, Gahan CGM, Hill C, 2005. The interaction between bacteria and bile. FEMS Microbiol Rev, 29(4):625–651.  https://doi.org/10.1016/j.femsre.2004.09.003 CrossRefGoogle Scholar
  6. Bustos AY, de Valdez GF, Fadda S, et al., 2018. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Res Int, 112:250–262.  https://doi.org/10.1016/j.foodres.2018.06.035 CrossRefGoogle Scholar
  7. Cariello M, Piccinin E, Garcia-Irigoyen O, et al., 2017. Nuclear receptor FXR, bile acids and liver damage: introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim Biophys Acta Mol Basis Dis, 1864(4): 1308–1318.  https://doi.org/10.1016/j.bbadis.2017.09.019 CrossRefGoogle Scholar
  8. Cariou B, van Harmelen K, Duran-Sandoval D, et al., 2006. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem, 281(16):11039–11049.  https://doi.org/10.1074/jbc.M510258200 CrossRefGoogle Scholar
  9. Carr RM, Reid AE, 2015. FXR agonists as therapeutic agents for non-alcoholic fatty liver disease. Curr Atheroscler Rep, 17(4):16.  https://doi.org/10.1007/s11883-015-0500-2 CrossRefGoogle Scholar
  10. Cheng J, Fang ZZ, Kim JH, et al., 2014. Intestinal CYP3A4 protects against lithocholic acid-induced hepatotoxicity in intestine-specific VDR-deficient mice. J Lipid Res, 55(3): 455–465.  https://doi.org/10.1194/jlr.M044420 CrossRefGoogle Scholar
  11. Degirolamo C, Modica S, Palasciano G, et al., 2011. Bile acids and colon cancer: solving the puzzle with nuclear receptors. Trends Mol Med, 17(10):564–572.  https://doi.org/10.1016/j.molmed.2011.05.010 CrossRefGoogle Scholar
  12. Degirolamo C, Rainaldi S, Bovenga F, et al., 2014. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the FXR-FGF15 axis in mice. Cell Rep, 7(1):12–18.  https://doi.org/10.1016/j.celrep.2014.02.032 CrossRefGoogle Scholar
  13. Devkota S, Wang YW, Musch MW, et al., 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in IL10-/- mice. Nature, 487(7405):104–108.  https://doi.org/10.1038/nature11225 CrossRefGoogle Scholar
  14. Duran-Sandoval D, Cariou B, Percevault F, et al., 2005. The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition. J Biol Chem, 280(33):29971–29979.  https://doi.org/10.1074/jbc.M501931200 CrossRefGoogle Scholar
  15. Enright EF, Joyce SA, Gahan CG, et al., 2017. Impact of gut microbiota-mediated bile acid metabolism on the solubilization capacity of bile salt micelles and drug solubility. Mol Pharm, 14(4):1251–1263.  https://doi.org/10.1021/acs.molpharmaceut.6b01155 CrossRefGoogle Scholar
  16. Espinosa A, Dardalhon V, Brauner S, et al., 2009. Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway. J Exp Med, 206(8):1661–1671.  https://doi.org/10.1084/jem.20090585 CrossRefGoogle Scholar
  17. Gadaleta RM, Oldenburg B, Willemsen EC, et al., 2011. Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-κB signaling in the intestine. Biochim Biophys Acta, 1812(8):851–858.  https://doi.org/10.1016/j.bbadis.2011.04.005 CrossRefGoogle Scholar
  18. Giorgetti G, Brandimarte G, Fabiocchi F, et al., 2015. Interactions between innate immunity, microbiota, and probiotics. J Immunol Res, 2015:501361.  https://doi.org/10.1155/2015/501361 CrossRefGoogle Scholar
  19. Gonzalez FJ, Jiang CT, Patterson AD, 2016. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. Gastroenterology, 151(5):845–859.  https://doi.org/10.1053/j.gastro.2016.08.057 CrossRefGoogle Scholar
  20. Hofmann AF, 1999. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med, 159(22): 2647–2658.  https://doi.org/10.1001/archinte.159.22.2647 CrossRefGoogle Scholar
  21. Hofmann AF, 2004. Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity. Drug Metab Rev, 36(3-4):703–722.  https://doi.org/10.1081/DMR-200033475.CrossRefGoogle Scholar
  22. Hunt MC, Yang YZ, Eggertsen G, et al., 2000. The peroxisome proliferator-activated receptor α (PPARα) regulates bile acid biosynthesis. J Biol Chem, 275(37):28947–28953.  https://doi.org/10.1074/jbc.M002782200 CrossRefGoogle Scholar
  23. Inagaki T, Choi M, Moschetta A, et al., 2005. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab, 2(4):217–225.  https://doi.org/10.1016/j.cmet.2005.09.001 CrossRefGoogle Scholar
  24. Inagaki T, Moschetta A, Lee YK, et al., 2006. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA, 103(10): 3920–3925.  https://doi.org/10.1073/pnas.0509592103 CrossRefGoogle Scholar
  25. Islam KBMS, Fukiya S, Hagio M, et al., 2011. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology, 141(5):1773–1781.  https://doi.org/10.1053/j.gastro.2011.07.046 CrossRefGoogle Scholar
  26. Jiang CT, Xie C, Li F, et al., 2015. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest, 125(1):386–402.  https://doi.org/10.1172/JCI76738 CrossRefGoogle Scholar
  27. Jin DP, Wu SP, Zhang YG, et al., 2015. Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin Ther, 37(5):996–1009.  https://doi.org/10.1016/j.clinthera.2015.04.004 CrossRefGoogle Scholar
  28. Jin LH, Fang ZP, Fan MJ, et al., 2019. Bile-ology: from bench to bedside. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(5):414–427.  https://doi.org/10.1631/jzus.B1900158 CrossRefGoogle Scholar
  29. Joyce SA, MacSharry J, Casey PG, et al., 2014. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA, 111(20):7421–7426.  https://doi.org/10.1073/pnas.1323599111 CrossRefGoogle Scholar
  30. Kakiyama G, Pandak WM, Gillevet PM, et al., 2013. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol, 58(5):949–955.  https://doi.org/10.1016/j.jhep.2013.01.003 CrossRefGoogle Scholar
  31. Kakiyama G, Hylemon PB, Zhou HP, et al., 2014. Colonic inflammation and secondary bile acids in alcoholic cirrhosis. Am J Physiol Gastrointest Liver Physiol, 306(11): G929–G937.  https://doi.org/10.1152/ajpgi.00315.2013 CrossRefGoogle Scholar
  32. Katsuma S, Hirasawa A, Tsujimoto G, 2005. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun, 329(1):386–390.  https://doi.org/10.1016/j.bbrc.2005.01.139 CrossRefGoogle Scholar
  33. Keitel V, Donner M, Winandy S, et al., 2008. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun, 372(1):78–84.  https://doi.org/10.1016/j.bbrc.2008.04.171 CrossRefGoogle Scholar
  34. Kundu S, Kumar S, Bajaj A, 2015. Cross-talk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications. IUBMB Life, 67(7):514–523.  https://doi.org/10.1002/iub.1399 CrossRefGoogle Scholar
  35. Laverdure R, Mezouari A, Carson MA, et al., 2018. A role for methanogens and methane in the regulation of GLP-1. Endocrinol Diabetes Metab, 1(1):e00006.  https://doi.org/10.1002/edm2.6 Google Scholar
  36. Lee WJ, Hase K, 2014. Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol, 10(6): 416–424.  https://doi.org/10.1038/nchembio.1535 CrossRefGoogle Scholar
  37. Lee YS, Shin S, Shigihara T, et al., 2007. Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes, 56(6): 1671–1679.  https://doi.org/10.2337/db06-1182 CrossRefGoogle Scholar
  38. Li TG, Chiang JY, 2014. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev, 66(4):948–983.  https://doi.org/10.1124/pr.113.008201 CrossRefGoogle Scholar
  39. Li-Hawkins J, Gåfvels M, Olin M, et al., 2002. Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. J Clin Invest, 110(8):1191–1200.  https://doi.org/10.1172/JCI16309 CrossRefGoogle Scholar
  40. Liu Q, Shao WT, Zhang CL, et al., 2017. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice. Environ Pollut, 226:268–276.  https://doi.org/10.1016/j.envpol.2017.03.068 CrossRefGoogle Scholar
  41. Lu TT, Makishima M, Repa JJ, et al., 2000. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell, 6(3):507–515.  https://doi.org/10.1016/S1097-2765(00)00050-2 CrossRefGoogle Scholar
  42. Ma YJ, Huang YX, Yan LN, et al., 2013. Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance. Pharm Res, 30(5):1447–1457.  https://doi.org/10.1007/s11095-013-0986-7 CrossRefGoogle Scholar
  43. Masubuchi N, Sugihara M, Sugita T, et al., 2016. Oxidative stress markers, secondary bile acids and sulfated bile acids classify the clinical liver injury type: promising diagnostic biomarkers for cholestasis. Chem Biol Interact, 255:83–91.  https://doi.org/10.1016/j.cbi.2015.08.016 CrossRefGoogle Scholar
  44. Matsubara T, Li F, Gonzalez FJ, 2013. FXR signaling in the enterohepatic system. Mol Cell Endocrinol, 368(1-2):17–29.  https://doi.org/10.1016/j.mce.2012.05.004 CrossRefGoogle Scholar
  45. Modica S, Murzilli S, Salvatore L, et al., 2008. Nuclear bile acid receptor FXR protects against intestinal tumorigenesis. Cancer Res, 68(23):9589–9594.  https://doi.org/10.1158/0008-5472.CAN-08-1791 CrossRefGoogle Scholar
  46. Mullish BH, Pechlivanis A, Barker GF, et al., 2018. Functional microbiomics: evaluation of gut microbiota-bile acid metabolism interactions in health and disease. Methods, 149:49–58.  https://doi.org/10.1016/j.ymeth.2018.04.028 CrossRefGoogle Scholar
  47. Neish AS, 2009. Microbes in gastrointestinal health and disease. Gastroenterology, 136(1):65–80.  https://doi.org/10.1053/j.gastro.2008.10.080 CrossRefGoogle Scholar
  48. Nie YF, Jun HU, Yan XH, 2015. Cross-talk between bile acids and intestinal microbiota in host metabolism and health. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 16(6):436–446.  https://doi.org/10.1631/jzus.B1400327 CrossRefGoogle Scholar
  49. Out C, Patankar JV, Doktorova M, et al., 2015. Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4. J Hepatol, 63(3):697–704.  https://doi.org/10.1016/j.jhep.2015.04.030 CrossRefGoogle Scholar
  50. Pabst O, 2012. New concepts in the generation and functions of IgA. Nat Rev Immunol, 12(12):821–832.  https://doi.org/10.1038/nri3322 CrossRefGoogle Scholar
  51. Pathak P, Xie C, Nichols RG, et al., 2018. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology, 68(4):1574–1588.  https://doi.org/10.1002/hep.29857 CrossRefGoogle Scholar
  52. Peng L, Piekos S, Guo GL, et al., 2016. Role of farnesoid X receptor in establishment of ontogeny of phase-I drug metabolizing enzyme genes in mouse liver. Acta Pharm Sin B, 6(5):453–459.  https://doi.org/10.1016/j.apsb.2016.07.015 CrossRefGoogle Scholar
  53. Pols TWH, Nomura M, Harach T, et al., 2011. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab, 14(6):747–757.  https://doi.org/10.1016/j.cmet.2011.11.006 CrossRefGoogle Scholar
  54. Reijnders D, Goossens GH, Hermes GDA, et al., 2016. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab, 24(1):63–74.  https://doi.org/10.1016/j.cmet.2016.06.016 CrossRefGoogle Scholar
  55. Ridlon JM, Kang DJ, Hylemon PB, 2006. Bile salt biotransformations by human intestinal bacteria. J Lipid Res, 47(2):241–259.  https://doi.org/10.1194/jlr.R500013-JLR200 CrossRefGoogle Scholar
  56. Russell DW, 2003. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem, 72:137–174.  https://doi.org/10.1146/annurev.biochem.72.121801.161712 CrossRefGoogle Scholar
  57. Sayin SI, Wahlström A, Felin J, et al., 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab, 17(2):225–235.  https://doi.org/10.1016/j.cmet.2013.01.003 CrossRefGoogle Scholar
  58. Shehata MG, el Sohaimy SA, El-Sahn MA, et al., 2016. Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Ann Agric Sci, 61(1):65–75.  https://doi.org/10.1016/j.aoas.2016.03.001 CrossRefGoogle Scholar
  59. Sinclair P, Brennan DJ, le Roux CW, 2018. Gut adaptation after metabolic surgery and its influences on the brain, liver and cancer. Nat Rev Gastroenterol Hepatol, 15(10): 606–624.  https://doi.org/10.1038/s41575-018-0057-y CrossRefGoogle Scholar
  60. Sonnenburg JL, Bäckhed F, 2016. Diet-microbiota interactions as moderators of human metabolism. Nature, 535(7610): 56–64.  https://doi.org/10.1038/nature18846 CrossRefGoogle Scholar
  61. Sun J, 2016. VDR/vitamin D receptor regulates autophagic activity through ATG16L1. Autophagy, 12(6):1057–1058.  https://doi.org/10.1080/15548627.2015.1072670 CrossRefGoogle Scholar
  62. Sun J, 2017. The role of vitamin D and vitamin D receptors in colon cancer. Clin Transl Gastroenterol, 8(6):e103.  https://doi.org/10.1038/ctg.2017.31 CrossRefGoogle Scholar
  63. Sung J, Kim S, Cabatbat JJT, et al., 2017. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat Commun, 8:15393.  https://doi.org/10.1038/ncomms15393 CrossRefGoogle Scholar
  64. Swann JR, Want EJ, Geier FM, et al., 2011. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci USA, 108(Suppl 1): 4523–4530.  https://doi.org/10.1073/pnas.1006734107 CrossRefGoogle Scholar
  65. Thaiss CA, Zmora N, Levy M, et al., 2016. The microbiome and innate immunity. Nature, 535(7610):65–74.  https://doi.org/10.1038/nature18847 CrossRefGoogle Scholar
  66. Theriot CM, Bowman AA, Young VB, 2016. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere, 1(1):e00045-15.  https://doi.org/10.1128/mSphere.00045-15
  67. Tremaroli V, Bäckhed F, 2012. Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415): 242–249.  https://doi.org/10.1038/nature11552 CrossRefGoogle Scholar
  68. Vijayvargiya P, Camilleri M, Carlson P, et al., 2017. Performance characteristics of serum C4 and FGF19 measurements to exclude the diagnosis of bile acid diarrhoea in IBS-diarrhoea and functional diarrhoea. Aliment Pharmacol Ther, 46(6):581–588.  https://doi.org/10.1111/apt.14214 CrossRefGoogle Scholar
  69. Vítek L, Haluzík M, 2016. The role of bile acids in metabolic regulation. J Endocrinol, 228(3):R85–R96.  https://doi.org/10.1530/JOE-15-0469 CrossRefGoogle Scholar
  70. Vogtmann E, Goedert JJ, 2016. Epidemiologic studies of the human microbiome and cancer. Br J Cancer, 114(3): 237–242.  https://doi.org/10.1038/bjc.2015.465 CrossRefGoogle Scholar
  71. Vrieze A, van Nood E, Holleman F, et al., 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143(4):913–916.  https://doi.org/10.1053/j.gastro.2012.06.031 CrossRefGoogle Scholar
  72. Vrieze A, Out C, Fuentes S, et al., 2014. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol, 60(4):824–831.  https://doi.org/10.1016/j.jhep.2013.11.034 CrossRefGoogle Scholar
  73. Wada K, Tanaka H, Maeda K, et al., 2009. Vitamin D receptor expression is associated with colon cancer in ulcerative colitis. Oncol Rep, 22(5):1021–1025.  https://doi.org/10.3892/or_00000530 Google Scholar
  74. Wang J, Thingholm LB, Skiecevičienė J, et al., 2016. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet, 48(11):1396–1406.  https://doi.org/10.1038/ng.3695 CrossRefGoogle Scholar
  75. Wang YD, Chen WD, Wang MH, et al., 2008. Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory response. Hepatology, 48(5):1632–1643.  https://doi.org/10.1002/hep.22519 CrossRefGoogle Scholar
  76. Wang YD, Chen WD, Yu D, et al., 2011. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology, 54(4):1421–1432.  https://doi.org/10.1002/hep.24525 CrossRefGoogle Scholar
  77. Watanabe M, Houten SM, Mataki C, et al., 2006. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 439(7075):484–489.  https://doi.org/10.1038/nature04330 CrossRefGoogle Scholar
  78. Wolfe A, Thomas A, Edwards G, et al., 2011. Increased activation of the Wnt/β-catenin pathway in spontaneous hepatocellular carcinoma observed in farnesoid X receptor knockout mice. J Pharmacol Exp Ther, 338(1):12–21.  https://doi.org/10.1124/jpet.111.179390 CrossRefGoogle Scholar
  79. Woodhouse CA, Patel VC, Singanayagam A, et al., 2018. Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease. Aliment Pharmacol Ther, 47(2):192–202.  https://doi.org/10.1111/apt.14397 CrossRefGoogle Scholar
  80. Wu SP, Liao AP, Xia YL, et al., 2010. Vitamin D receptor negatively regulates bacterial-stimulated NF-κB activity in intestine. Am J Pathol, 177(2):686–697.  https://doi.org/10.2353/ajpath.2010.090998 CrossRefGoogle Scholar
  81. Xie C, Jiang CT, Shi JM, et al., 2017. An intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes, 66(3):613–626.  https://doi.org/10.2337/db16-0663 CrossRefGoogle Scholar
  82. Yamada S, Takashina Y, Watanabe M, et al., 2018. Bile acid metabolism regulated by the gut microbiota promotes non-alcoholic steatohepatitis-associated hepatocellular carcinoma in mice. Oncotarget, 9(11):9925–9939.  https://doi.org/10.18632/oncotarget.24066 CrossRefGoogle Scholar
  83. Yamagata K, Daitoku H, Shimamoto Y, et al., 2004. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem, 279(22):23158–23165.  https://doi.org/10.1074/jbc.M314322200 CrossRefGoogle Scholar
  84. Yang T, Owen JL, Lightfoot YL, et al., 2013. Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol Med, 19(12):714–725.  https://doi.org/10.1016/j.molmed.2013.08.005 CrossRefGoogle Scholar
  85. Zhang YQ, Lee FY, Barrera G, et al., 2006. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA, 103(4):1006–1011.  https://doi.org/10.1073/pnas.0506982103 CrossRefGoogle Scholar
  86. Zimmer J, Lange B, Frick JS, et al., 2012. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr, 66(1):53–60.  https://doi.org/10.1038/ejcn.2011.141 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Bioelectronics, School of Biological Science & Medical EngineeringSoutheast UniversityNanjingChina
  2. 2.School of MedicineSoutheast UniversityNanjingChina
  3. 3.Center of Reproduction and GeneticsAffiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina

Personalised recommendations