Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 6, pp 488–495 | Cite as

Exosomal long non-coding RNAs: biological properties and therapeutic potential in cancer treatment

  • Jie Luo
  • Yan Xiong
  • Pei-fen Fu
  • En-chun Li
  • Lei Qu
  • Xiao Fan
  • Zhi-jian CaiEmail author
  • Ai-fu LinEmail author
Review
  • 17 Downloads

Abstract

Exosomes and long non-coding RNAs (lncRNAs) are emerging as important elements contributing to a more comprehensive understanding of cancer development and progression. The discovery of lncRNAs in exosomes further indicates their bona fide biological functional roles in cancer development and drug resistance. In this review, we describe the biogenesis of exosomes and summarize the function of exosomal lncRNAs in the field of cancer research. These findings strikingly advance current knowledge of exosomal lncRNAs and suggest that they may be promising diagnostic biomarkers and therapeutic targets for cancer.

Key words

Exosome Long non-coding RNA (lncRNA) Biosynthesis Biomarker Drug resistance 

外泌体lncRNA 研究进展及其肿瘤靶向潜质

概要

外泌体和长链非编码RNA(lncRNA)与肿瘤等 危害人类健康重大疾病的发生发展密切相关。对 外泌体中lncRNA 研究的深入解析有助于人们更 加全面地了解癌症发生发展机理机制,并有助于 为进一步肿瘤精准靶向治疗提供新的潜在标志 物及临床靶点。本综述阐述了外泌体的发生过程 及其内容lncRNA,并进一步通过深入总结外泌 体lncRNA 在肿瘤临床药物耐受中的作用,评估 其肿瘤靶向潜质,揭示其作为潜在有效靶向治疗 靶点和诊疗标志物的前景意义。

关键词

外泌体 长链非编码RNA(lncRNA) 生物合 成 生物标志物 肿瘤靶点 临床耐药 

CLC number

Q39 

References

  1. Balkwill FR, Capasso M, Hagemann T, 2012. The tumor microenvironment at a glance. J Cell Sci, 125(23):5591–5596.  https://doi.org/10.1242/jcs.116392 CrossRefGoogle Scholar
  2. Berrondo C, Flax J, Kucherov V, et al., 2016. Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS ONE, 11(1):e0147236.  https://doi.org/10.1371/journal.pone.0147236 CrossRefGoogle Scholar
  3. Bunggulawa EJ, Wang W, Yin TY, et al., 2018. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol, 16(1):81.  https://doi.org/10.1186/s12951-018-0403-9 CrossRefGoogle Scholar
  4. Chairoungdua A, Smith DL, Pochard P, et al., 2010. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol, 190(6):1079–1091.  https://doi.org/10.1083/jcb.201002049 CrossRefGoogle Scholar
  5. Dai MY, Chen XL, Mo SY, et al., 2017. Meta-signature lncRNAs serve as novel biomarkers for colorectal cancer: integrated bioinformatics analysis, experimental validation and diagnostic evaluation. Sci Rep, 7:46572.  https://doi.org/10.1038/srep46572 CrossRefGoogle Scholar
  6. Dong HY, Wang W, Chen R, et al., 2018. Exosome-mediated transfer of lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol, 53(3): 1013–1026.  https://doi.org/10.3892/ijo.2018.4467 Google Scholar
  7. Hessvik NP, Llorente A, 2018. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci, 75(2): 193–208.  https://doi.org/10.1007/s00018-017-2595-9 CrossRefGoogle Scholar
  8. Hoshino A, Costa-Silva B, Shen TL, et al., 2015. Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578):329–335.  https://doi.org/10.1038/nature15756 CrossRefGoogle Scholar
  9. Juan T, Fürthauer M, 2017. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol, 74:66–77.  https://doi.org/10.1016/j.semcdb.2017.08.022 CrossRefGoogle Scholar
  10. Kang M, Ren MP, Li Y, et al., 2018. Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA. J Exp Clin Cancer Res, 37: 171.  https://doi.org/10.1186/s13046-018-0845-9 CrossRefGoogle Scholar
  11. Li BG, Mao R, Liu CF, et al., 2018. LncRNA FAL1 promotes cell proliferation and migration by acting as a ceRNA of miR-1236 in hepatocellular carcinoma cells. Life Sci, 197: 122–129.  https://doi.org/10.1016/j.lfs.2018.02.006 CrossRefGoogle Scholar
  12. Li Q, Huang QP, Wang YL, et al., 2018. Extracellular vesicle-mediated bone metabolism in the bone microenvironment. J Bone Miner Metab, 36(1):1–11.  https://doi.org/10.1007/s00774-017-0860-5 CrossRefGoogle Scholar
  13. Ma YX, Zhang JM, Wen LX, et al., 2018. Membrane-lipid associated lncRNA: a new regulator in cancer signaling. Cancer Lett, 419:27–29.  https://doi.org/10.1016/j.canlet.2018.01.008 CrossRefGoogle Scholar
  14. Matsumoto A, Takahashi Y, Nishikawa M, et al., 2017. Role of phosphatidylserine-derived negative surface charges in the recognition and uptake of intravenously injected B16BL6-derived exosomes by macrophages. J Pharm Sci, 106(1):168–175.  https://doi.org/10.1016/j.xphs.2016.07.022 CrossRefGoogle Scholar
  15. Melo SA, Luecke LB, Kahlert C, et al., 2015. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 523(7559):177–182.  https://doi.org/10.1038/nature14581 CrossRefGoogle Scholar
  16. Ohya T, Miaczynska M, Coskun Ü, et al., 2009. Reconstitution of Rab- and SNARE-dependent membrane fusion by synthetic endosomes. Nature, 459(7250):1091–1097.  https://doi.org/10.1038/nature08107 CrossRefGoogle Scholar
  17. Ostrowski M, Carmo NB, Krumeich S, et al., 2010. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol, 12(1):19–30.  https://doi.org/10.1038/ncb2000 CrossRefGoogle Scholar
  18. Park O, Choi ES, Yu GH, et al., 2018. Efficient delivery of tyrosinase related protein-2 (TRP2) peptides to lymph nodes using serum-derived exosomes. Macromol Biosci, 18(12):1800301.  https://doi.org/10.1002/mabi.201800301 CrossRefGoogle Scholar
  19. Piper RC, Katzmann DJ, 2007. Biogenesis and function of multivesicular bodies. Annu Rev Cell Dev Biol, 23:519–547.  https://doi.org/10.1146/annurev.cellbio.23.090506.123319 CrossRefGoogle Scholar
  20. Qu L, Ding J, Chen C, et al., 2016. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell, 29(5):653–668.  https://doi.org/10.1016/j.ccell.2016.03.004 CrossRefGoogle Scholar
  21. Sang LJ, Ju HQ, Liu GP, et al., 2018. LncRNA CamK-A regulates Ca2+-signaling-mediated tumor microenvironment remodeling. Mol Cell, 72(1):71–83.e7.  https://doi.org/10.1016/j.molcel.2018.08.014 CrossRefGoogle Scholar
  22. Shao HL, Im H, Castro CM, et al., 2018. New technologies for analysis of extracellular vesicles. Chem Rev, 118(4): 1917–1950.  https://doi.org/10.1021/acs.chemrev.7b00534 CrossRefGoogle Scholar
  23. Soysal SD, Tzankov A, Muenst SE, 2015. Role of the tumor microenvironment in breast cancer. Pathobiology, 82(3–4): 142–152.  https://doi.org/10.1159/000430499 CrossRefGoogle Scholar
  24. Takahashi K, Yan IK, Kogure T, et al., 2014a. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio, 4:458–467.  https://doi.org/10.1016/j.fob.2014.04.007 CrossRefGoogle Scholar
  25. Takahashi K, Yan IK, Wood J, et al., 2014b. Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol Cancer Res, 12(10):1377–1387.  https://doi.org/10.1158/1541-7786.MCR-13-0636 CrossRefGoogle Scholar
  26. Tamai K, Tanaka N, Nakano T, et al., 2010. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys Res Commun, 399(3):384–390.  https://doi.org/10.1016/j.bbrc.2010.07.083 CrossRefGoogle Scholar
  27. Tan SK, Pastori C, Penas C, et al., 2018. Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol Cancer, 17:74.  https://doi.org/10.1186/s12943-018-0822-0 CrossRefGoogle Scholar
  28. Tang JW, Jiang RQ, Deng L, et al., 2015. Circulation long non-coding RNAs act as biomarkers for predicting tumorigenesis and metastasis in hepatocellular carcinoma. Oncotarget, 6(6):4505–4515.  https://doi.org/10.18632/oncotarget.2934 CrossRefGoogle Scholar
  29. Théry C, Zitvogel L, Amigorena S, 2002. Exosomes: composition, biogenesis and function. Nat Rev Immunol, 2(8): 569–579.  https://doi.org/10.1038/nri855 CrossRefGoogle Scholar
  30. Trajkovic K, Hsu C, Chiantia S, et al., 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319(5867):1244–1247.  https://doi.org/10.1126/science.1153124 CrossRefGoogle Scholar
  31. Valadi H, Ekström K, Bossios A, et al., 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 9(6):654–659.  https://doi.org/10.1038/ncb1596 CrossRefGoogle Scholar
  32. Villarroya-Beltri C, Baixauli F, Mittelbrunn M, et al., 2016. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun, 7: 13588.  https://doi.org/10.1038/ncomms13588 CrossRefGoogle Scholar
  33. Wang JT, Zhou YD, Lu JG, et al., 2014. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol, 31(9): 148.  https://doi.org/10.1007/s12032-014-0148-8 CrossRefGoogle Scholar
  34. Zeigerer A, Gilleron J, Bogorad RL, et al., 2012. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature, 485(7399):465–470.  https://doi.org/10.1038/nature11133 CrossRefGoogle Scholar
  35. Zhang W, Cai XR, Yu J, et al., 2018. Exosome-mediated transfer of lncRNA RP11-838N2.4 promotes erlotinib resistance in non-small cell lung cancer. Int J Oncol, 53(2):527–538.  https://doi.org/10.3892/ijo.2018.4412 Google Scholar
  36. Zhao R, Zhang YL, Zhang X, et al., 2018. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer, 17(1):68.  https://doi.org/10.1186/s12943-018-0817-x CrossRefGoogle Scholar
  37. Zheng X, Han H, Liu GP, et al., 2017. LncRNA wires up Hippo and Hedgehog signaling to reprogramme glucose metabolism. EMBO J, 36(22):3325–3335.  https://doi.org/10.15252/embj.201797609 CrossRefGoogle Scholar
  38. Zhou RH, Chen KK, Zhang JT, et al., 2018. The decade of exosomal long RNA species: an emerging cancer antagonist. Mol Cancer, 17:75.  https://doi.org/10.1186/s12943-018-0823-z CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Gynecology, Women’s Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Department of Orthopedic Surgery, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  3. 3.The Breast Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  4. 4.MOE Laboratory of Biosystems Homeostasis & Protection, College of Life SciencesZhejiang UniversityHangzhouChina
  5. 5.Institute of Immunology, and Department of Orthopaedics, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations