Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 8, pp 693–698 | Cite as

Involvement of mitochondrial dysfunction in hepatotoxicity induced by Ageratina adenophora in mice

  • Wei Sun
  • Chao-rong Zeng
  • Dong Yue
  • Yan-chun HuEmail author
Correspondence
  • 3 Downloads

紫茎泽兰引起小鼠线粒体功能障碍从而导致肝脏毒性损伤

抽象

目 的

研究紫茎泽兰造成小鼠肝脏毒性损伤后, 肝脏线粒体结构和功能发生变化的情况。

创新点

紫茎泽兰可以导致肝脏细胞发生凋亡和焦亡, 从而产生中毒损伤, 然而尚未有报道其对线粒体超微结构和功能的改变。 本研究通过多种手段解决了这一问题。

方 法

将 40 只小鼠随机分成 4 组, 分别饲喂不同浓度的紫茎泽兰饲料 (对照组、 100、 200 和 300 g/kg 紫茎泽兰添加饲料组)。 采用苏木精-伊红染色法 (H&E) 研究肝脏损伤情况, 利用透射电子显微技术研究线粒体超微结构改变。 同时, 结合实时荧光定量聚合酶链反应 (qRT-PCR) 、流式细胞术和化学分析方法对线粒体 DNA 拷贝数、 肿胀度和三磷酸腺苷 (ATP) 酶活性的改变进行探究。

结 论

紫茎泽兰导致线粒体超微结构的改变, 增大了线粒体肿胀度, 降低了钠钾 ATP 酶(Na+K+-ATPase) 和钙镁 ATP 酶 (Ca2+Mg2+-ATPase) 活力, 同时减少了 DNA 拷贝数, 从而引起肝脏损伤。

关键词

紫茎泽兰 肝毒性 线粒体功能障碍 三磷酸腺苷(ATP)酶 线粒体DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11585_2019_25_MOESM1_ESM.pdf (153 kb)
Involvement of mitochondrial dysfunction in hepatotoxicity induced by Ageratina adenophora in mice

References

  1. Guo CX, Wang J, Jing L, et al., 2018. Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. Environ Pollut, 236:926–936.  https://doi.org/10.1016/j.envpol.2017.10.060 CrossRefGoogle Scholar
  2. Guo SH, Li W, Zhang LB, et al., 2009. Kinetics and equilibrium adsorption study of lead(II) onto the low cost adsorbent—Eupatorium adenophorum spreng. Process Saf Environ Prot, 87(5):343–351.  https://doi.org/10.1016/j.psep.2009.06.003 CrossRefGoogle Scholar
  3. He YJ, Chen WH, Hu YC, et al., 2015a. E. adenophorum induces cell cycle and apoptosis of renal cells through mitochondrial pathway and caspase activation in Saanen goat. PLoS ONE, 10(9):e0138504.  https://doi.org/10.1371/journal.pone.0138504 CrossRefGoogle Scholar
  4. He YJ, Mo Q, Hu YC, et al., 2015b. E. adenophorum induces cell cycle arrest and apoptosis of splenocytes through the mitochondrial pathway and caspase activation in Saanen goats. Sci Rep, 5:15967.  https://doi.org/10.1038/srep15967 CrossRefGoogle Scholar
  5. He YJ, Mo Q, Luo B, et al., 2016. Induction of apoptosis and autophagy via mitochondria- and PI3K/Akt/mTOR-mediated pathways by E. adenophorum in hepatocytes of Saanen goat. Oncotarget, 7(34):54537–54548.  https://doi.org/10.18632/oncotarget.10402 CrossRefGoogle Scholar
  6. Katoch R, Sharma OP, Dawra RK, et al., 2000. Hepatotoxicity of Eupatorium adenophorum to rats. Toxicon, 38(2):309–314.  https://doi.org/10.1016/S0041-0101(99)00151-8 CrossRefGoogle Scholar
  7. Kaushal V, Dawra RK, Sharma OP, et al., 2001. Biochemical alterations in the blood plasma of rats associated with hepatotoxicity induced by Eupatorium adenophorum. Vet Res Commun, 25(7):601–608.  https://doi.org/10.1023/a:1017933418167 CrossRefGoogle Scholar
  8. Koh H, Park GS, Shin SM, et al., 2018. Mitochondrial mutations in cholestatic liver disease with biliary atresia. Sci Rep, 8:905.  https://doi.org/10.1038/s41598-017-18958-8 CrossRefGoogle Scholar
  9. Larosche I, Lettéron P, Berson A, et al., 2010. Hepatic mitochondrial DNA depletion after an alcohol binge in mice: probable role of peroxynitrite and modulation by manganese superoxide dismutase. J Pharmacol Exp Ther, 332(3):886–897.  https://doi.org/10.1124/jpet.109.160879 CrossRefGoogle Scholar
  10. Nie XJ, Lv SZ, Zhang YX, et al., 2012. Complete chloroplast genome sequence of a major invasive species, Crofton weed (Ageratina adenophora). PLoS ONE, 7(5):e36869.  https://doi.org/10.1371/journal.pone.0036869 CrossRefGoogle Scholar
  11. Nugent SME, Mothersill CE, Seymour C, et al., 2007. Increased mitochondrial mass in cells with functionally compromised mitochondria after exposure to both direct γ radiation and bystander factors. Radiat Res, 168(1):134–142.  https://doi.org/10.1667/RR0769.1 CrossRefGoogle Scholar
  12. O’Sullivan BM, 1985. Investigations into Crofton weed (Eupatorium adenophorum) toxicity in horses. Aust Vet J, 62(1):30–32.  https://doi.org/10.1111/j.1751-0813.1985.tb06044.x CrossRefGoogle Scholar
  13. Robin ED, Wong R, 1988. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol, 136(3):507–513.  https://doi.org/10.1002/jcp.1041360316 CrossRefGoogle Scholar
  14. Sani Y, Harper PAW, Cook RL, et al., 1992. The toxicity of Eupatorium adenophorum for the liver of the mouse. Proceedings of the Third International Symposium. Iowa State University Press, USA, p.626–629.Google Scholar
  15. Shay JW, Pierce DJ, Werbin H, 1990. Mitochondrial DNA copy number is proportional to total cell DNA under a variety of growth conditions. J Biol Chem, 265(25):14802–14807.Google Scholar
  16. Shi XX, Bai HY, Zhao M, et al., 2018. Treatment of acetaminophen-induced liver injury with exogenous mitochondria in mice. Transl Res, 196:31–41.  https://doi.org/10.1016/j.trsl.2018.02.003 CrossRefGoogle Scholar
  17. Song Y, Wu ZC, Ding W, et al., 2018. NF-κB in mitochondria regulates PC12 cell apoptosis following lipopolysaccharide-induced injury. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(6):425–435.  https://doi.org/10.1631/jzus.B1700488 CrossRefGoogle Scholar
  18. Sun W, Zeng CR, Liu SS, et al., 2018. Ageratina adenophora induces mice hepatotoxicity via ROS-NLRP3-mediated pyroptosis. Sci Rep, 8:16032.  https://doi.org/10.1038/s41598-018-34492-7 CrossRefGoogle Scholar
  19. Taruno A, 2018. ATP release channels. Int J Mol Sci, 19(3):808.  https://doi.org/10.3390/ijms19030808 CrossRefGoogle Scholar
  20. Tiao MM, Lin TK, Kuo FY, et al., 2007. Early stage of biliary atresia is associated with significant changes in 8-hydroxydeoxyguanosine and mitochondrial copy number. J Pediatr Gastroenterol Nutr, 45(3):329–334.  https://doi.org/10.1097/mpg.0b013e3180cc2c0f CrossRefGoogle Scholar
  21. Wang C, Lin HL, Feng QS, et al., 2017. A new strategy for the prevention and control of Eupatorium adenophorum under climate change in China. Sustainability, 9(11):2037.  https://doi.org/10.3390/su9112037 CrossRefGoogle Scholar
  22. Wang LY, Wang DH, Zou XY, et al., 2009. Mitochondrial functions on oocytes and preimplantation embryos. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 10(7):483–492.  https://doi.org/10.1631/jzus.B0820379 CrossRefGoogle Scholar
  23. Yang HJ, Du RW, Wu YK, et al., 2017. Microbial composting and detoxification of Ageratina adenophora. Acta Pratacult Sin, 26(6):131–138 (in Chinese).Google Scholar
  24. Zhu L, Sun OJ, Sang WG, et al., 2007. Predicting the spatial distribution of an invasive plant species (Eupatorium adenophorum) in China. Landscape Ecol, 22(8):1143–1154.  https://doi.org/10.1007/s10980-007-9096-4 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Animal Disease and Environmental Hazards of Sichuan Province, College of Veterinary MedicineSichuan Agricultural UniversityChengduChina
  2. 2.Tongren Polytechnic CollegeTongrenChina
  3. 3.Sichuan Bayi Rehabilitation CenterAffiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCMChengduChina

Personalised recommendations