Advertisement

Lymphatic vasculature in tumor metastasis and immunobiology

  • Xinguo JiangEmail author
Review

Abstract

Lymphatic vessels are essential for tissue fluid homeostasis, immune cell trafficking, and intestinal lipid absorption. The lymphatics have long been recognized to serve as conduits for distant tumor dissemination. However, recent findings suggest that the regional lymphatic vasculature also shapes the immune microenvironment of the tumor mass and potentiates immunotherapy. This review discusses the role of lymphatic vessels in tumor metastasis and tumor immunity.

Key words

Lymphatic Lymphatic endothelial cell (LEC) Cancer Metastasis Immunotherapy 

淋巴血管在肿瘤转移和免疫生物学中的作用

概 要

淋巴系统被认为是肿瘤转移的重要途径之一, 所以通常情况下肿瘤引起的淋巴血管增生会降低肿瘤预后, 治疗上也建议淋巴清扫。 但是最新的研究显示, 淋巴系统可能对肿瘤免疫治疗有促进作用。 这篇综述的主要目的是对相关领域做一个简短总结, 以期待将来有更多的研究来关注淋巴系统对肿瘤治疗的影响。 文章首先介绍肿瘤淋巴血管增生和淋巴转移的分子机制, 然后介绍淋巴系统在肿瘤免疫中的作用, 最后利用最新研究来证明淋巴系统有增强肿瘤免疫治疗的作用。

关键词

淋巴系统 淋巴内皮细胞 肿瘤 转移 免疫治疗 

CLC number

R730.2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The author wishes to gratefully acknowledge Dr. Stanley ROCKSON (Stanford University, USA) for critical comments on this manuscript.

References

  1. Allen F, Rauhe P, Askew D, et al., 2017. CCL3 enhances antitumor immune priming in the lymph node via IFNγ with dependency on natural killer cells. Front Immunol, 8:1390.  https://doi.org/10.3389/fimmu.2017.01390 Google Scholar
  2. Arbiser JL, Moses MA, Fernandez CA, et al., 1997. Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA, 94(3):861–866.  https://doi.org/10.1073/pnas.94.3.861 Google Scholar
  3. Ariffin AB, Forde PF, Jahangeer S, et al., 2014. Releasing pressure in tumors: what do we know so far and where do we go from here? A review. Cancer Res, 74(10):2655–2662.  https://doi.org/10.1158/0008-5472 Google Scholar
  4. Aspelund A, Robciuc MR, Karaman S, et al., 2016. Lymphatic system in cardiovascular medicine. Circul Res, 118(3): 515–530.  https://doi.org/10.1161/CIRCRESAHA.115.306544 Google Scholar
  5. Baluk P, Fuxe J, Hashizume H, et al., 2007. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med, 204(10):2349–2362.  https://doi.org/10.1084/jem.20062596 Google Scholar
  6. Baluk P, Yao LC, Feng J, et al., 2009. TNF-α drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Invest, 119(10):2954–2964.  https://doi.org/10.1172/JCI37626 Google Scholar
  7. Baluk P, Hogmalm A, Bry M, et al., 2013. Transgenic overexpression of interleukin-1β induces persistent lymphangiogenesis but not angiogenesis in mouse airways. Am J Pathol, 182(4):1434–1447.  https://doi.org/10.1016/j.ajpath.2012.12.003 Google Scholar
  8. Boardman KC, Swartz MA, 2003. Interstitial flow as a guide for lymphangiogenesis. Circul Res, 92(7):801–808.  https://doi.org/10.1161/01.RES.0000065621.69843.49 Google Scholar
  9. Bordry N, Broggi MAS, de Jonge K, et al., 2018. Lymphatic vessel density is associated with CD8+ T cell infiltration and immunosuppressive factors in human melanoma. Oncoimmunology, 7(8):e1462878.  https://doi.org/10.1080/2162402X.2018.1462878 Google Scholar
  10. Cao YH, 2005. Emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer, 5(9): 735–743.  https://doi.org/10.1038/nrc1693 Google Scholar
  11. Card CM, Yu SS, Swartz MA, 2014. Emerging roles of lymphatic endothelium in regulating adaptive immunity. J Clin Invest, 124(3):943–952.  https://doi.org/10.1172/JCI73316 Google Scholar
  12. Chandrasekaran S, King MR, 2014. Microenvironment of tumor-draining lymph nodes: opportunities for liposome-based targeted therapy. Int J Mol Sci, 15(11):20209–20239.  https://doi.org/10.3390/ijms151120209 Google Scholar
  13. Chen DS, Mellman I, 2017. Elements of cancer immunity and the cancer-immune set point. Nature, 541(7637):321–330.  https://doi.org/10.1038/nature21349 Google Scholar
  14. Christiansen AJ, Dieterich LC, Ohs I, et al., 2016. Lymphatic endothelial cells attenuate inflammation via suppression of dendritic cell maturation. Oncotarget, 7(26):39421–39435.  https://doi.org/10.18632/oncotarget.9820 Google Scholar
  15. Cui Y, Liu K, Lamattina AM, et al., 2017. Lymphatic vessels: the next frontier in lung transplant. Ann Am Thorac Soc, 14(S3):S226–S232.  https://doi.org/10.1513/AnnalsATS.201606-465MG Google Scholar
  16. da Mesquita S, Louveau A, Vaccari A, et al., 2018. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature, 560(7717):185–191.  https://doi.org/10.1038/s41586-018-0368-8 Google Scholar
  17. Dadras SS, Paul T, Bertoncini J, et al., 2003. Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol, 162(6):1951–1960.  https://doi.org/10.1016/S0002-9440(10)64328-3 Google Scholar
  18. Das S, Sarrou E, Podgrabinska S, et al., 2013. Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses. J Exp Med, 210(8):1509–1528.  https://doi.org/10.1084/jem.20111627 Google Scholar
  19. Dieterich LC, Ikenberg K, Cetintas T, et al., 2017. Tumor-associated lymphatic vessels upregulate PDL1 to inhibit T-cell activation. Front Immunol, 8:66.  https://doi.org/10.3389/fimmu.2017.00066 Google Scholar
  20. Enholm B, Paavonen K, Ristimaki A, et al., 1997. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene, 14(20):2475–2483.  https://doi.org/10.1038/sj.onc.1201090 Google Scholar
  21. Fankhauser M, Broggi MAS, Potin L, et al., 2017. Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma. Sci Transl Med, 9(407):eaal4712.  https://doi.org/10.1126/scitranslmed.aal4712 Google Scholar
  22. Folkman J, 1971. Tumor angiogenesis: therapeutic implications. N Engl J Med, 285(21):1182–1186.  https://doi.org/10.1056/NEJM197111182852108 Google Scholar
  23. Förster R, Davalos-Misslitz AC, Rot A, 2008. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol, 8(5):362–371.  https://doi.org/10.1038/nri2297 Google Scholar
  24. Fransen MF, Schoonderwoerd M, Knopf P, et al., 2018. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight, 3(23):e124507.  https://doi.org/10.1172/jci.insight.124507 Google Scholar
  25. Gao P, Li CJ, Chang Z, et al., 2018. Carcinoma associated fibroblasts derived from oral squamous cell carcinoma promote lymphangiogenesis via c-Met/PI3K/AKT in vitro. Oncol Lett, 15(1):331–337.  https://doi.org/10.3892/ol.2017.7301 Google Scholar
  26. Guan XM, 2015. Cancer metastases: challenges and opportunities. Acta Pharm Sin B, 5(5):402–418.  https://doi.org/10.1016/j.apsb.2015.07.005 Google Scholar
  27. Harris AR, Perez MJ, Munson JM, 2018. Docetaxel facilitates lymphatic-tumor crosstalk to promote lymphangiogenesis and cancer progression. BMC Cancer, 18:718.  https://doi.org/10.1186/s12885-018-4619-8 Google Scholar
  28. Harvey NL, Gordon EJ, 2012. Deciphering the roles of macrophages in developmental and inflammation stimulated lymphangiogenesis. Vascular Cell, 4(1):15.  https://doi.org/10.1186/2045-824X-4-15 Google Scholar
  29. Henri O, Pouehe C, Houssari M, et al., 2016. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation, 133(15): 1484–1497.  https://doi.org/10.1161/CIRCULATIONAHA.115.020143 Google Scholar
  30. Hirakawa S, Kodama S, Kunstfeld R, et al., 2005. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med, 201(7):1089–1099.  https://doi.org/10.1084/jem.20041896 Google Scholar
  31. Hirakawa S, Brown LF, Kodama S, et al., 2007. VEGF-Cinduced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood, 109(3): 1010–1017.  https://doi.org/10.1182/blood-2006-05-021758 Google Scholar
  32. Hirakawa S, Detmar M, Kerjaschki D, et al., 2009. Nodal lymphangiogenesis and metastasis: role of tumor-induced lymphatic vessel activation in extramammary Paget’s disease. Am J Pathol, 175(5):2235–2248.  https://doi.org/10.2353/ajpath.2009.090420 Google Scholar
  33. Hos D, Cursiefen C, 2014. Lymphatic vessels in the development of tissue and organ rejection. In: Kiefer F, Schulte-Merker S (Eds.), Developmental Aspects of the Lymphatic Vascular System. Advances in Anatomy, Embryology and Cell Biology, Vol. 214. Springer, Vienna, p.119–141.  https://doi.org/10.1007/978-3-7091-1646-3_10 Google Scholar
  34. Imai T, Hieshima K, Haskell C, et al., 1997. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell, 91(4):521–530.  https://doi.org/10.1016/S0092-8674(00)80438-9 Google Scholar
  35. Jackson DG, 2014. Lymphatic regulation of cellular trafficking. J Clin Cell Immunol, 5:258.  https://doi.org/10.4172/2155-9899.1000258 Google Scholar
  36. Jeanbart L, Ballester M, de Titta A, et al., 2014. Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol Res, 2(5): 436–447.  https://doi.org/10.1158/2326-6066 Google Scholar
  37. Jeltsch M, Kaipainen A, Joukov V, et al., 1997. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science, 276(5317):1423–1425.  https://doi.org/10.1126/science.276.5317.1423 Google Scholar
  38. Jiang XG, Shapiro DJ, 2014. The immune system and inflammation in breast cancer. Mol Cell Endocrinol, 382(1): 673–682.  https://doi.org/10.1016/j.mce.2013.06.003 Google Scholar
  39. Jiang XG, Nicolls MR, Tian W, et al., 2018. Lymphatic dysfunction, leukotrienes, and lymphedema. Ann Rev Physiol, 80:49–70.  https://doi.org/10.1146/annurev-physiol-022516-034008 Google Scholar
  40. Kabashima K, Shiraishi N, Sugita K, et al., 2007a. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol, 171(4):1249–1257.  https://doi.org/10.2353/ajpath.2007.070225 Google Scholar
  41. Kabashima K, Sugita K, Shiraishi N, et al., 2007b. CXCR4 engagement promotes dendritic cell survival and maturation. Biochem Biophys Res Commun, 361(4):1012–1016.  https://doi.org/10.1016/j.bbrc.2007.07.128 Google Scholar
  42. Karaman S, Detmar M, 2014. Mechanisms of lymphatic metastasis. J Clin Invest, 124(3):922–928.  https://doi.org/10.1172/JCI71606 Google Scholar
  43. Karlsson MC, Gonzalez SF, Welin J, et al., 2017. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol, 11(7):781–791.  https://doi.org/10.1002/1878-0261.12092 Google Scholar
  44. Kerjaschki D, Bago-Horvath Z, Rudas M, et al., 2011. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest, 121(5):2000–2012.  https://doi.org/10.1172/JCI44751 Google Scholar
  45. Kim S, Chung M, Jeon NL, 2016. Three-dimensional biomimetic model to reconstitute sprouting lymphangiogenesis in vitro. Biomaterials, 78:115–128.  https://doi.org/10.1016/j.biomaterials.2015.11.019 Google Scholar
  46. Kimura T, Sugaya M, Oka T, et al., 2015. Lymphatic dysfunction attenuates tumor immunity through impaired antigen presentation. Oncotarget, 6(20):18081–18093.  https://doi.org/10.18632/oncotarget.4018 Google Scholar
  47. Lambert AW, Pattabiraman DR, Weinberg RA, 2017. Emerging biological principles of metastasis. Cell, 168(4):670–691.  https://doi.org/10.1016/j.cell.2016.11.037 Google Scholar
  48. Lane RS, Femel J, Breazeale AP, et al., 2018. IFNγ-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J Exp Med, 215(12):3057.  https://doi.org/10.1084/jem.20180654 Google Scholar
  49. Lee JW, Epardaud M, Sun J, et al., 2007. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol, 8(2):181–190.  https://doi.org/10.1038/ni1427 Google Scholar
  50. Lopez Gelston CA, Balasubbramanian D, Abouelkheir GR, et al., 2018. Enhancing renal lymphatic expansion prevents hypertension in mice. Circul Res, 122(8):1094–1101.  https://doi.org/10.1161/CIRCRESAHA.118.312765 Google Scholar
  51. Lukacs-Kornek V, Malhotra D, Fletcher AL, et al., 2011. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol, 12(11):1096–1104.  https://doi.org/10.1038/ni.2112 Google Scholar
  52. Lund AW, Duraes FV, Hirosue S, et al., 2012. VEGF-C promotes immune tolerance in B16 melanomas and crosspresentation of tumor antigen by lymph node lymphatics. Cell Rep, 1(3):191–199.  https://doi.org/10.1016/j.celrep.2012.01.005 Google Scholar
  53. Lund AW, Wagner M, Fankhauser M, et al., 2016. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest, 126(9):3389–3402.  https://doi.org/10.1172/JCI79434 Google Scholar
  54. Mäkinen T, Norrmén C, Petrova TV, 2007. Molecular mechanisms of lymphatic vascular development. Cell Mol Life Sci, 64(15):1915–1929.  https://doi.org/10.1007/s00018-007-7040-z Google Scholar
  55. Malhotra D, Fletcher AL, Astarita J, et al., 2012. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat Immunol, 13(5):499–510.  https://doi.org/10.1038/ni.2262 Google Scholar
  56. Mlecnik B, Bindea G, Kirilovsky A, et al., 2016. The tumor microenvironment and immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med, 8(327):327ra26.  https://doi.org/10.1126/scitranslmed.aad6352 Google Scholar
  57. Mortimer PS, Rockson SG, 2014. New developments in clinical aspects of lymphatic disease. J Clin Invest, 124(3): 915–921.  https://doi.org/10.1172/JCI71608 Google Scholar
  58. Müller A, Homey B, Soto H, et al., 2001. Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824):50–56.  https://doi.org/10.1038/35065016 Google Scholar
  59. Nandi P, Girish GV, Majumder M, et al., 2017. PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells. BMC Cancer, 17:11.  https://doi.org/10.1186/s12885-016-3018-2 Google Scholar
  60. Nichols LA, Chen YM, Colella TA, et al., 2007. Deletional self-tolerance to a melanocyte/melanoma antigen derived from tyrosinase is mediated by a radio-resistant cell in peripheral and mesenteric lymph nodes. J Immunol, 179(2):993–1003.  https://doi.org/10.4049/jimmunol.179.2.993 Google Scholar
  61. Nishikawa H, Sakaguchi S, 2014. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol, 27:1–7.  https://doi.org/10.1016/j.coi.2013.12.005 Google Scholar
  62. Nörder M, Gutierrez MG, Zicari S, et al., 2012. Lymph node-derived lymphatic endothelial cells express functional costimulatory molecules and impair dendritic cell-induced allogenic T-cell proliferation. FASEB J, 26(7): 2835–2846.  https://doi.org/10.1096/fj.12-205278 Google Scholar
  63. Paduch R, 2016. The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol, 39(5):397–410.  https://doi.org/10.1007/s13402-016-0281-9 Google Scholar
  64. Pflicke H, Sixt M, 2009. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med, 206(13):2925–2935.  https://doi.org/10.1084/jem.20091739 Google Scholar
  65. Proulx ST, Detmar M, 2013. Molecular mechanisms and imaging of lymphatic metastasis. Exp Cell Res, 319(11): 1611–1617.  https://doi.org/10.1016/j.yexcr.2013.03.009 Google Scholar
  66. Randolph GJ, Ivanov S, Zinselmeyer BH, et al., 2016. The lymphatic system: integral roles in immunity. Annu Rev Immunol, 35:31–52.  https://doi.org/10.1146/annurev-immunol-041015-055354 Google Scholar
  67. Robbins PD, Morelli AE, 2014. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol, 14(3): 195–208.  https://doi.org/10.1038/nri3622 Google Scholar
  68. Roberts EW, Broz ML, Binnewies M, et al., 2016. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell, 30(2):324–336.  https://doi.org/10.1016/j.ccell.2016.06.003 Google Scholar
  69. Rockson SG, Tian W, Jiang XG, et al., 2018. Pilot studies demonstrate the potential benefits of antiinflammatory therapy in human lymphedema. JCI Insight, 3(20):e123775.  https://doi.org/10.1172/jci.insight.123775 Google Scholar
  70. Rohner NA, McClain J, Tuell SL, et al., 2015. Lymph node biophysical remodeling is associated with melanoma lymphatic drainage. FASEB J, 29(11):4512–4522.  https://doi.org/10.1096/fj.15-274761 Google Scholar
  71. Roozendaal R, Mempel TR, Pitcher LA, et al., 2009. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity, 30(2):264–276.  https://doi.org/10.1016/j.immuni.2008.12.014 Google Scholar
  72. Sainz-Jaspeado M, Claesson-Welsh L, 2018. Cytokines regulating lymphangiogenesis. Curr Opin Immunol, 53:58–63.  https://doi.org/10.1016/j.coi.2018.04.003 Google Scholar
  73. Schoenborn JR, Wilson CB, 2007. Regulation of interferon-γ during innate and adaptive immune responses. Adv Immunol, 96:41–101.  https://doi.org/10.1016/S0065-2776(07)96002-2 Google Scholar
  74. Schumacher TN, Schreiber RD, 2015. Neoantigens in cancer immunotherapy. Science, 348(6230):69–74.  https://doi.org/10.1126/science.aaa4971 Google Scholar
  75. Shayan R, Achen MG, Stacker SA, 2006. Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis, 27(9):1729–1738.  https://doi.org/10.1093/carcin/bgl031 Google Scholar
  76. Shin K, Kataru RP, Park HJ, et al., 2015. TH2 cells and their cytokines regulate formation and function of lymphatic vessels. Nat Commun, 6:6196.  https://doi.org/10.1038/ncomms7196 Google Scholar
  77. Skobe M, Hawighorst T, Jackson DG, et al., 2001. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med, 7(2):192–198.  https://doi.org/10.1038/84643 Google Scholar
  78. Stacker SA, Caesar C, Baldwin ME, et al., 2001. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med, 7(2):186–191.  https://doi.org/10.1038/84635 Google Scholar
  79. Stacker SA, Williams SP, Karnezis T, et al., 2014. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer, 14(3):159–172.  https://doi.org/10.1038/nrc3677 Google Scholar
  80. Stump B, Cui Y, Kidambi P, et al., 2017. Lymphatic changes in respiratory diseases: more than just remodeling of the lung? Am J Respir Cell Mol Biol, 57(3):272–279.  https://doi.org/10.1165/rcmb.2016-0290TR Google Scholar
  81. Su WC, Shiesh SC, Liu HS, et al., 2001. Expression of oncogene products HER2/Neu and Ras and fibrosis-related growth factors bFGF, TGF-β, and PDGF in bile from biliary malignancies and inflammatory disorders. Dig Dis Sci, 46(7):1387–1392.Google Scholar
  82. Tammela T, Alitalo K, 2010. Lymphangiogenesis: molecular mechanisms and future promise. Cell, 140(4):460–476.  https://doi.org/10.1016/j.cell.2010.01.045 Google Scholar
  83. Tewalt EF, Cohen JN, Rouhani SJ, et al., 2012. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood, 120(24):4772–4782.  https://doi.org/10.1182/blood-2012-04-427013 Google Scholar
  84. Thomas SN, Vokali E, Lund AW, et al., 2014. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials, 35(2):814–824.  https://doi.org/10.1016/j.biomaterials.2013.10.003 Google Scholar
  85. Thomas SN, Rohner NA, Edwards EE, 2016. Implications of lymphatic transport to lymph nodes in immunity and immunotherapy. Annu Rev Biomed Eng, 18:207–233.  https://doi.org/10.1146/annurev-bioeng-101515-014413 Google Scholar
  86. Tian W, Rockson SG, Jiang XG, et al., 2017. Leukotriene B4 antagonism ameliorates experimental lymphedema. Sci Transl Med, 9(389):eaal3920.  https://doi.org/10.1126/scitranslmed.aal3920 Google Scholar
  87. Ueba T, Nosaka T, Takahashi JA, et al., 1994. Transcriptional regulation of basic fibroblast growth factor gene by p53 in human glioblastoma and hepatocellular carcinoma cells. Proc Natl Acad Sci USA, 91(19):9009–9013.  https://doi.org/10.1073/pnas.91.19.9009 Google Scholar
  88. Uramoto H, Hackzell A, Wetterskog D, et al., 2004. pRb, Myc and p53 are critically involved in SV40 large T antigen repression of PDGF β-receptor transcription. J Cell Sci, 117(17):3855–3865.  https://doi.org/10.1242/jcs.01228 Google Scholar
  89. Vaahtomeri K, Karaman S, Makinen T, et al., 2017. Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev, 31(16):1615–1634.  https://doi.org/10.1101/gad.303776.117 Google Scholar
  90. Varricchi G, Loffredo S, Galdiero MR, et al., 2018. Innate effector cells in angiogenesis and lymphangiogenesis. Curr Opin Immunol, 53:152–160.  https://doi.org/10.1016/j.coi.2018.05.002 Google Scholar
  91. Vieira JM, Norman S, del Campo CV, et al., 2018. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J Clin Invest, 128(8): 3402–3412.  https://doi.org/10.1172/JCI97192 Google Scholar
  92. Wei R, Lv MQ, Li F, et al., 2017. Human CAFs promote lymphangiogenesis in ovarian cancer via the Hh-VEGF-C signaling axis. Oncotarget, 8(40):67315–67328.  https://doi.org/10.18632/oncotarget.18621 Google Scholar
  93. Weichand B, Popp R, Dziumbla S, et al., 2017. S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β. J Exp Med, 214(9):2695–2713.  https://doi.org/10.1084/jem.20160392 Google Scholar
  94. Wong BW, Wang XW, Zecchin A, et al., 2017. The role of fatty acid β-oxidation in lymphangiogenesis. Nature, 542(7639):49–54.  https://doi.org/10.1038/nature21028 Google Scholar
  95. Yamada A, Nagahashi M, Aoyagi T, et al., 2018. ABCC1-exported sphingosine-1-phosphate, produced by Sphingosine kinase 1, shortens survival of mice and patients with breast cancer. Mol Cancer Res, 16(6):1059–1070.  https://doi.org/10.1158/1541-7786 Google Scholar
  96. Yeo KP, Angeli V, 2017. Bidirectional crosstalk between lymphatic endothelial cell and T cell and its implications in tumor immunity. Front Immunol, 8:83.  https://doi.org/10.3389/fimmu.2017.00083 Google Scholar
  97. Yu PC, Wilhelm K, Dubrac A, et al., 2017. FGF-dependent metabolic control of vascular development. Nature, 545(7653):224–228.  https://doi.org/10.1038/nature22322 Google Scholar
  98. Zheng W, Tammela T, Yamamoto M, et al., 2011. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood, 118(4):1154–1162.  https://doi.org/10.1182/blood-2010-11-317800 Google Scholar
  99. Zheng W, Aspelund A, Alitalo K, 2014. Lymphangiogenic factors, mechanisms, and applications. J Clin Invest, 124(3):878–887.  https://doi.org/10.1172/JCI71603 Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.VA Palo Alto Health Care SystemStanford University School of MedicinePalo AltoUSA

Personalised recommendations