Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 4, pp 300–309 | Cite as

Simulation of inter atrial block based on a human atrial model

  • Yuan Gao
  • Ying-lan Gong
  • Ling XiaEmail author
  • Ding-chang Zheng
Article
  • 4 Downloads

Abstract

Inter atrial block (IAB) is a prevailing cardiac conduction abnormality that is under-recognized in clinical practice. IAB has strong association with atrial arrhythmia, left atrial enlargement, and electromechanical discordance, increasing the risk of atrial fibrillation (AF) and myocardial ischemia. IAB was generally believed to be caused by impaired conduction along the Bachmann bundle (BB). However, there are three other conduction pathways, including the fibers posteriorly in the vicinity of the right pulmonary veins (VRPV), transseptal fibers in the fossa ovalis (FO), and muscular bundles on the inferior atrial surface near the coronary sinus (CS). We hypothesized that the importance of BB on IAB might have been overestimated. To test this hypothesis, various combinations of conduction pathway blocks were simulated based on a realistic human atrial model to investigate their effects on the index of clinical diagnosis standard of IAB using a simulated 12-lead electrocardiogram (ECG). Firstly, the results showed that the BB block alone could not generate typical P wave morphology of IAB, and that the combination of BB and VRPV pathway block played important roles in the occurrence of IAB. Secondly, although single FO and CS pathways play subordinate roles in inter atrial conduction, their combination with BB and VRPV block could also produce severe IAB. In summary, this simulation study has demonstrated that the combinations of different inter atrial conduction pathways, rather than BB alone, resulted in ECG morphology of IAB. Attention needs to be paid to this in future pathophysiological and clinical studies of IAB.

Key words

Inter atrial block Electrocardiogram Simulation Heart model 

基于人体心房模型的房间阻滞仿真

概 要

目 的

探究不同心房间传导通道阻滞的组合对形成房间 阻滞的影响及体表心电图变化, 探究房间阻滞的 产生机理。

创新点

通过仿真证明了单一Bachmann 束阻滞并不能产 生典型的房间阻滞P 波时长和波形, 并结合电兴 奋传导时序, 解 了房间阻滞的产生机理。

方 法

通过 64 位螺旋电子计算机断层扫描 (CT) 扫描 人体心房, 构建心房解剖模型。阻断不同的心房 间传导通道, 以单域方程仿真出心房电兴奋传导 时序, 采用边界元法计算各时刻人体体表电位, 进而计算出 P 波波形。

结 论

要使 P 波时长和形态均满足临床诊断房间阻滞的 条件, 必须同时阻断 Bachmann 束和右肺静脉后 部的穿间隔纤维 (VRPV) 通道, 这为进一步了解 房间阻滞的发病机制及未来临床研究提供了指导。

关键词

房间阻滞 心电图 仿真 心脏建模 

CLC number

R540.4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe Y, Fukunami M, Yamada T, et al., 1997. Prediction of transition to chronic atrial fibrillation in patients with paroxysmal atrial fibrillation by signal-averaged electrocardiography: a prospective study. Circulation, 96(8): 2612–2616. https://doi.org/10.1161/01.CIR.96.8.2612 Google Scholar
  2. Ackerman MI, 1991. Viewpoint: the visible human project. J Biocommun, 18(2):14.Google Scholar
  3. Alexander B, MacHaalany J, Lam B, et al., 2017. Comparison of the extent of coronary artery disease in patients with versus without interatrial block and implications for new-onset atrial fibrillation. Am J Cardiol, 119(8):1162–1165. https://doi.org/10.1016/j.amjcard.2016.12.032 Google Scholar
  4. Ariyarajah V, Spodick DH, 2006. The Bachmann Bundle and interatrial conduction. Cardiol Rev, 14(4):194–199. https://doi.org/10.1097/01.crd.0000195221.26979.2b Google Scholar
  5. Ariyarajah V, Apiyasawat S, Najjar H, et al., 2007a. Frequency of interatrial block in patients with sinus rhythm hospitalized for stroke and comparison to those without inter-atrial block. Am J Cardiol, 99(1):49–52. https://doi.org/10.1016/j.amjcard.2006.07.060 Google Scholar
  6. Ariyarajah V, Kranis M, Apiyasawat S, et al., 2007b. Potential factors that affect electrocardiographic progression of interatrial block. Ann Noninvasive Electrocardiol, 12(1): 21–26. https://doi.org/10.1111/j.1542-474X.2007.00134.x Google Scholar
  7. Bachmann G, 1916. The inter-auricular time interval. Am J Physiol Legacy Content, 41(3):309–320. https://doi.org/10.1152/ajplegacy.1916.41.3.309 Google Scholar
  8. Bayés de Luna A, Platonov P, Cosio FG, et al., 2012. Interatrial blocks. A separate entity from left atrial enlargement: a consensus report. J Electrocardiol, 45(5):445–451. https://doi.org/10.1016/j.jelectrocard.2012.06.029 Google Scholar
  9. Bayés de Luna A, Martínez-Sellés M, Bayés-Genís A, et al., 2017. Surface ECG interatrial block-guided treatment for stroke prevention: rationale for an attractive hypothesis. BMC Cardiovasc Disord, 17:211. https://doi.org/10.1186/s12872-017-0650-y Google Scholar
  10. Burri H, Bennani I, Domenichini G, et al., 2011. Biatrial pacing improves atrial haemodynamics and atrioventricular timing compared with pacing from the right atrial appendage. EP Europace, 13(9):1262–1267. https://doi.org/10.1093/europace/eur099 Google Scholar
  11. Chhabra L, Devadoss R, Chaubey VK, et al., 2014. Interatrial block in the modern era. Curr Cardiol Rev, 10(3): 181–189. https://doi.org/10.2174/1573403X10666140514101748 Google Scholar
  12. Courtemanche M, Ramirez RJ, Nattel S, 1998. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol, 275(1): H301–H321. https://doi.org/10.1152/ajpheart.1998.275.LH301 Google Scholar
  13. Deng DD, Jiao PF, Ye XS, et al., 2012a. An image-based model of the whole human heart with detailed anatomical structure and fiber orientation. Comput Math Methods Med, 2012:891070. https://doi.org/10.1155/2012/891070 Google Scholar
  14. Deng DD, Gong YL, Shou GF, et al., 2012b. Simulation of biatrial conduction via different pathways during sinus rhythm with a detailed human atrial model. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 13(9):676–694. https://doi.org/10.1631/jzus.B1100339 Google Scholar
  15. Enriquez A, Sarrias A, Villuendas R, et al., 2015. New-onset atrial fibrillation after cavotricuspid isthmus ablation: identification of advanced interatrial block is key. EP Europace, 17(8):1289–1293. https://doi.org/10.1093/europace/euu379 Google Scholar
  16. Fernández-Fernández FJ, 2017. Atrial fibrillation: interatrial block may be an underdiagnosed and easily recognizable risk factor. Mayo Clin Proc, 92(4):681–682. https://doi.org/10.1016/j.mayocp.2017.01.022 Google Scholar
  17. Gao Y, Xia L, Gong YL, et al., 2018. Electrocardiogram (ECG) patterns of left anterior fascicular block and conduction impairment in ventricular myocardium: a whole-heart model-based simulation study. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(1):49–56. https://doi.org/10.1631/jzus.B1700029 Google Scholar
  18. Gialafos E, Psaltopoulou T, Papaioannou TG, et al., 2007. Prevalence of interatrial block in young healthy men <35 years of age. Am J Cardiol, 100(6):995–997. https://doi.org/10.1016/j.amjcard.2007.04.041 Google Scholar
  19. Gong YL, Gao Y, Lu ZH, et al., 2015. Preliminary simulation study of atrial fibrillation treatment procedure based on a detailed human atrial model. J Clin Trial Cardiol, 2(4): 1–9. https://doi.org/10.15226/2374-6882/2/4/00130 Google Scholar
  20. He JL, Tse G, Korantzopoulos P, et al., 2017. P-wave indices and risk of ischemic stroke: a systematic review and meta-analysis. Stroke, 48(8):2066–2072. https://doi.org/10.1161/STROKEAHA.117.017293 Google Scholar
  21. Kitkungvan D, Spodick DH, 2009. Interatrial block: is it time for more attention? J Electrocardiol, 42(6):687–692. https://doi.org/10.1016/j.jelectrocard.2009.07.016 Google Scholar
  22. Kligfield P, Gettes LS, Bailey JJ, et al., 2007. Recommendations for the standardization and interpretation of the electrocardiogram: Part I: the electrocardiogram and its technology: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. J Am Coll Cardiol, 49(10):1109–1127. https://doi.org/10.1016/j.jacc.2007.01.024 Google Scholar
  23. Lau CP, Tachapong N, Wang CC, et al., 2013. Prospective randomized study to assess the efficacy of site and rate of atrial pacing on long-term progression of atrial fibrillation in sick sinus syndrome: septal pacing for atrial fibrillation suppression evaluation (SAFE) study. Circulation, 128(7): 687–693. https://doi.org/10.1161/CIRCULATIONAHA.113.001644 Google Scholar
  24. Martínez-Sellés M, Massó-van Roessel A, Álvarez-García J, et al., 2016. Interatrial block and atrial arrhythmias in centenarians: prevalence, associations, and clinical implications. Heart Rhythm, 13(3):645–651. https://doi.org/10.1016/j.hrthm.2015.10.034 Google Scholar
  25. Martínez-Sellés M, Baranchuk A, Elosua R, et al., 2017. Rationale and design of the BAYES (Interatrial Block and Yearly Events) registry. Clin Cardiol, 40(4):196–199. https://doi.org/10.1002/clc.22647 Google Scholar
  26. Massó-van Roessel A, Escobar-Robledo LA, Dégano IR, et al., 2017. Analysis of the association between electrocardio-graphic P-wave characteristics and atrial fibrillation in the REGICOR study. Rev Esp Cardiol (Engl Ed), 70(10): 841–847. https://doi.org/10.1016/j.rec.2017.02.019 Google Scholar
  27. O’Neal WT, Zhang ZM, Loehr LR, et al., 2016. Electrocardiographic advanced interatrial block and atrial fibrillation risk in the general population. Am J Cardiol, 117(11): 1755–1759. https://doi.org/10.1016/j.amjcard.2016.03.013 Google Scholar
  28. Rubaj A, Rucinski P, Kutarski A, et al., 2013. Cardiac hemodynamics and proinflammatory cytokines during biatrial and right atrial appendage pacing in patients with interatrial block. J Interv Card Electrophysiol, 37(2):147–154. https://doi.org/10.1007/s10840-013-9792-8 Google Scholar
  29. Shou GF, Xia L, Jiang MF, et al., 2007. Forward and inverse solutions of electrocardiography problem using an adaptive BEM method. Proc 4th Int Conf on Functional Imaging and Modeling of the Heart, p.290–299. https://doi.org/10.1007/978-3-540-72907-5_30
  30. Spodick DH, Ariyarajah V, 2009. Interatrial block: the pandemic remains poorly perceived. Pacing Clin Electro-physiol, 32(5):667–672. https://doi.org/10.1111/j.1540-8159.2009.02343.x Google Scholar
  31. Tapanainen JM, Jurkko RF, Holmqvist F, et al., 2009. Interatrial right-to-left conduction in patients with paroxysmal atrial fibrillation. J Interv Card Electrophysiol, 25(2): 117–122. https://doi.org/10.1007/s10840-008-9359-2 Google Scholar
  32. Tekkesin AI, Çinier G, Cakilli Y, et al., 2017. Interatrial block predicts atrial high rate episodes detected by cardiac implantable electronic devices. J Electrocardiol, 50(2):234–237. https://doi.org/10.1016/j.jelectrocard.2016.09.004 Google Scholar
  33. Tse G, Lai ETH, Yeo JM, et al., 2016. Electrophysiological mechanisms of Bayés syndrome: insights from clinical and mouse studies. Front Physiol, 7:188. https://doi.org/10.3389/fphys.2016.00188 Google Scholar
  34. Tse G, Wong CW, Gong MQ, et al., 2017. Predictive value of inter-atrial block for new onset or recurrent atrial fibrillation: a systematic review and meta-analysis. Int J Cardiol, 250:152–156. https://doi.org/10.1016/j.ijcard.2017.09.176 Google Scholar
  35. Verlato R, Botto GL, Massa R, et al., 2011. Efficacy of low interatrial septum and right atrial appendage pacing for prevention of permanent atrial fibrillation in patients with sinus node disease: results from the electrophysiology-guided pacing site selection (EPASS) study. Circ Arrhythm Electrophysiol, 4(6):844–850. https://doi.org/10.1161/CIRCEP.110.957126 Google Scholar
  36. Waldo AL, Bush HL Jr, Gelband H, et al., 1971. Effects on the canine P wave of discrete lesions in the specialized atrial tracts. Circ Res, 29(5):452–467. https://doi.org/10.1161/01.RES.29.5.452 Google Scholar
  37. Wu JT, Wang SL, Chu YJ, et al., 2017. CHADS2 and CHA2DS2-VASc scores predict the risk of ischemic stroke outcome in patients with interatrial block without atrial fibrillation. J Atheroscler Thromb, 24(2):176–184. https://doi.org/10.5551/jat.34900 Google Scholar
  38. Xia L, Huo M, Wei Q, et al., 2006. Electrodynamic heart model construction and ECG simulation. Methods Inf Med, 45(5):564–573. https://doi.org/10.1055/s-0038-1634119 Google Scholar
  39. Zhang Y, Xia L, Gong YL, et al., 2007. Parallel solution in simulation of cardiac excitation anisotropic propagation. Proc 4th Int Conf on Functional Imaging and Modeling of the Heart, p.170–179. https://doi.org/10.1007/978-3-540-72907-5_18

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical EngineeringZhejiang UniversityHangzhouChina
  2. 2.Health and Wellbeing Academy, Faculty of Medical ScienceAnglia Ruskin UniversityChelmsfordUK

Personalised recommendations