Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 4, pp 310–321 | Cite as

Mitochondrial superoxide anions induced by exogenous oxidative stress determine tumor cell fate: an individual cell-based study

  • Hui Pan
  • Bao-hui Wang
  • Zhou-bin Li
  • Xing-guo Gong
  • Yong Qin
  • Yan Jiang
  • Wei-li HanEmail author
Article
  • 6 Downloads

Abstract

Objective

Reactive oxygen species (ROS) are involved in a variety of biological phenomena and serve both deleterious and beneficial roles. ROS quantification and assessment of reaction networks are desirable but difficult because of their short half-life and high reactivity. Here, we describe a pro-oxidative model in a single human lung carcinoma SPC-A-1 cell that was created by application of extracellular H2O2 stimuli.

Methods

Modified microfluidics and imaging techniques were used to determine O2•− levels and construct an O2•− reaction network. To elucidate the consequences of increased O2•− input, the mitochondria were given a central role in the oxidative stress mode, by manipulating mitochondria-interrelated cytosolic Ca2+ levels, mitochondrial Ca2+ uptake, auto-amplification of intra-cellular ROS and the intrinsic apoptotic pathway.

Results and conclusions

Results from a modified microchip demonstrated that 1 mmol/L H2O2 induced a rapid increase in cellular O2•− levels (>27 vs. >406 amol in 20 min), leading to increased cellular oxidizing power (evaluated by ROS levels) and decreased reducing power (evaluated by glutathione (GSH) levels). In addition, we examined the dynamics of cytosolic Ca2+ and mitochondrial Ca2+ by confocal laser scanning microscopy and confirmed that Ca2+ stores in the endoplasmic reticulum were the primary source of H2O2-induced cytosolic Ca2+ bursts. It is clear that mitochondria have pivotal roles in determining how exogenous oxidative stress affects cell fate. The stress response involves the transfer of Ca2+ signals between organelles, ROS auto-amplification, mitochondrial dysfunction, and a caspase-dependent apoptotic pathway.

Key words

Individual cell Superoxide anion Reactive oxygen species (ROS) dynamics Intrinsic apoptotic pathway Ca2+ signaling 

外源性氧化应激诱导的线粒体超氧阴离子决定肿 瘤细胞命运:一项基于单个细胞的研究

概 要

目 的

通过细胞外过氧化氢 (H2O2) 的刺激建立单个人 肺癌SPC-A-1 细胞的氧化压力模型。

创新点

氧自由基 (ROS) 涉及多种生物现象, 包括有益 和有害两个方面。ROS 的定量检测和反应网络的 评估结果令人期待。但ROS 半衰期很短且反应过 程很快, 因此, 我们通过多种手段克服了检测和 评估的困难。

方 法

利用改进的微流控和成像技术测定 ROS 水平, 构 建氧反应网络。通过调控线粒体胞浆Ca2+水平、 线粒体 Ca2+摄取、细胞内ROS 自扩增以及内在 凋亡途径, 确定线粒体在外源氧化压力模式中扮 演的角色。

结论

研究结果表明1 mmol/L H2O2 引起细胞O2•−水平 的快速增加, 从而导致细胞氧化能力增加和还原 能力降低。此外, 研究还证实了内质网中储存的 Ca2+是H2O2 诱导的线粒体Ca2+爆发的主要来源。 外源氧化压力反应涉及细胞器间Ca2+信号的传 递、ROS 自身扩增、线粒体功能紊乱和半胱天冬 酶依赖性凋亡途径。线粒体在外源性氧化应激影 响细胞命运方面发挥着关键作用。

关键词

单个细胞 超氧阴离子 氧自由基动力学 内源性凋亡途径 钙信号 

CLC number

R73-3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akopova OV, 2008. The role of mitochondrial permeability transition pore in transmembrane Ca2+-exchange in mitochondria. Ukr Biokhim Zh (1999), 80(3):40–47 (in Ukrainian).Google Scholar
  2. Blokhina O, Fagerstedt KV, 2010. Oxidative metabolism, ROS and NO under oxygen deprivation. Plant Physiol Biochem, 48(5):359–373. https://doi.org/10.1016/j.plaphy.2010.01.007 CrossRefGoogle Scholar
  3. Bogeski I, Kappl R, Kummerow C, et al., 2011. Redox regulation of calcium ion channels: chemical and physiological aspects. Cell Calcium, 50(5):407–423. https://doi.org/10.1016/jxeca.2011.07.006 CrossRefGoogle Scholar
  4. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, et al., 2006. Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol, 291(5):C1082–C1088. https://doi.org/10.1152/ajpcell.00217.2006 CrossRefGoogle Scholar
  5. de Marchi E, Bonora M, Giorgi C, et al., 2014. The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux. Cell Calcium, 56(1):1–13. https://doi.org/10.1016/j.ceca.2014.03.004 CrossRefGoogle Scholar
  6. Feng W, Liu GH, Allen PD, et al., 2000. Transmembrane redox sensor of ryanodine receptor complex. J Biol Chem, 275(46):35902–35907. https://doi.org/10.1074/jbc.C000523200 CrossRefGoogle Scholar
  7. Gao J, Yin XF, Fang ZL, 2004. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip, 4(1):47–52. https://doi.org/10.1039/b310552k CrossRefGoogle Scholar
  8. Gao N, Li L, Shi ZK, et al., 2007. High-throughput determination of glutathione and reactive oxygen species in single cells based on fluorescence images in a microchannel. Electrophoresis, 28(21):3966–3975. https://doi.org/10.1002/elps.200700124 CrossRefGoogle Scholar
  9. Giorgi C, Missiroli S, Patergnani S, et al., 2015. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal, 22(12):995–1019. https://doi.org/10.1089/ars.2014.6223 CrossRefGoogle Scholar
  10. Hileman EO, Liu JS, Albitar M, et al., 2004. Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol, 53(3):209–219. https://doi.org/10.1007/s00280-003-0726-5 CrossRefGoogle Scholar
  11. Köhler AC, Sag CM, Maier LS, 2014. Reactive oxygen species and excitation-contraction coupling in the context of cardiac pathology. J Mol Cell Cardiol, 73:92–102. https://doi.org/10.1016/j.yjmcc.2014.03.001 CrossRefGoogle Scholar
  12. Labuschagne CF, Brenkman AB, 2013. Current methods in quantifying ROS and oxidative damage in Caenorhabditis elegans and other model organism of aging. Ageing Res Rev, 12(4):918–930. https://doi.org/10.1016/j.arr.2013.09.003 CrossRefGoogle Scholar
  13. Liochev SI, 2013. Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med, 60:1–4. https://doi.org/10.1016/j.freeradbiomed.2013.02.011 CrossRefGoogle Scholar
  14. Lyublinskaya OG, Zenin VV, Shatrova AN, et al., 2014. Intracellular oxidation of hydroethidine: compartmentalization and cytotoxicity of oxidation products. Free Radic Biol Med, 75:60–68. https://doi.org/10.1016/j.freeradbiomed.2014.07.008 CrossRefGoogle Scholar
  15. Maltepe E, Saugstad OD, 2009. Oxygen in health and disease: regulation of oxygen homeostasis-clinical implications. Pediatr Res, 65(3):261–268. https://doi.org/10.1203/PDR.0b013e31818fc83f CrossRefGoogle Scholar
  16. Martindale JL, Holbrook NJ, 2002. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 192(1):1–15. https://doi.org/10.1002/jcp.10119 CrossRefGoogle Scholar
  17. Moreau B, Nelson C, Parekh AB, 2006. Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration. Curr Biol, 16(16):1672–1677. https://doi.org/10.1016/j.cub.2006.06.059 CrossRefGoogle Scholar
  18. Mota SI, Costa RO, Ferreira IL, et al., 2015. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer’s disease. Biochim Biophys Acta, 1852(7):1428–1441. https://doi.org/10.1016/j.bbadis.2015.03.015 CrossRefGoogle Scholar
  19. Orrenius S, Gogvadze V, Zhivotovsky B, 2015. Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun, 460(1):72–81. https://doi.org/10.1016/j.bbrc.2015.01.137 CrossRefGoogle Scholar
  20. Pan H, Wang BH, Lv W, et al., 2015. Esculetin induces apoptosis in human gastric cancer cells through a cyclophilin D-mediated mitochondrial permeability transition pore associated with ROS. Chemico-Biological Interactions, 242:51–60. https://doi.org/10.1016/j.cbi.2015.09.015 CrossRefGoogle Scholar
  21. Pelicano H, Carney D, Huang P, 2004. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat, 7(2):97–110. https://doi.org/10.1016/j.drup.2004.01.004 CrossRefGoogle Scholar
  22. Qin Y, Chen FD, Zhou L, et al., 2009. Proliferative and anti-proliferative effects of thymosin α1 on cells are associated with manipulation of cellular ROS levels. Chem Biol Interact, 180(3):383–388. https://doi.org/10.1016/j.cbi.2009.05.006 CrossRefGoogle Scholar
  23. Qin Y, Pan X, Tang TT, et al., 2011. Anti-proliferative effects of the novel squamosamide derivative (FLZ) on HepG2 human hepatoma cells by regulating the cell cycle-related proteins are associated with decreased Ca2+/ROS levels. Chem Biol Interact, 193(3):246–253. https://doi.org/10.1016/j.cbi.2011.07.004 CrossRefGoogle Scholar
  24. Rhee SG, 2006. Cell signaling: H2O2, a necessary evil for cell signaling. Science, 312(5782):1882–1883. https://doi.org/10.1126/science.1130481 CrossRefGoogle Scholar
  25. Singh DK, Kumar D, Siddiqui Z, et al., 2005. The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell, 121(2):281–293. https://doi.org/10.1016/j.cell.2005.02.036 CrossRefGoogle Scholar
  26. Solier S, Pommier Y, 2011. MDC1 cleavage by caspase-3: a novel mechanism for inactivating the DNA damage response during apoptosis. Cancer Res, 71(3):906–913. https://doi.org/10.1158/0008-5472.CAN-10-3297 CrossRefGoogle Scholar
  27. Spät A, Pitter JG, 2004. The effect of cytoplasmic Ca2+ signal on the redox state of mitochondrial pyridine nucleotides. Mol Cell Endocrinol, 215(1–2):115–118. https://doi.org/10.1016/j.mce.2003.11.004 CrossRefGoogle Scholar
  28. Sun Y, Yin XF, 2006. Novel multi-depth microfluidic chip for single cell analysis. J Chromatogr A, 1117(2):228–233. https://doi.org/10.1016/jxhroma.2006.03.088 CrossRefGoogle Scholar
  29. Sun Y, Yin XF, Ling YY, et al., 2005. Determination of reactive oxygen species in single human erythrocytes using microfluidic chip electrophoresis. Anal Bioanal Chem, 382(7):1472–1476. https://doi.org/10.1007/s00216-005-3352-8 CrossRefGoogle Scholar
  30. Tang HY, Qin Y, Li JY, et al., 2011. The scavenging of superoxide radicals promotes apoptosis induced by a novel cell-permeable fusion protein, sTRAIL:FeSOD, in tumor necrosis factor-related apoptosis-inducing ligand-resistant leukemia cells. BMC Biol, 9: 18. https://doi.org/10.1186/1741-7007-9-18 CrossRefGoogle Scholar
  31. Thannickal VJ, Fanburg BL, 2000. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol, 279(6):L1005–L1028. https://doi.org/10.1152/ajplung.2000.279.6.L1005 CrossRefGoogle Scholar
  32. Tonks NK, 2005. Redox redux: revisiting PTPs and the control of cell signaling. Cell, 121(5):667–670. https://doi.org/10.1016/j.cell.2005.05.016 CrossRefGoogle Scholar
  33. von Montfort C, Matias N, Fernandez A, et al., 2012. Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scavenging in steatohepatitis. J Hepatol, 57(4):852–859. https://doi.org/10.1016/j.jhep.2012.05.024 CrossRefGoogle Scholar
  34. Voronina S, Sukhomlin T, Johnson PR, et al., 2002. Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells. J Physiol, 539:41–52. https://doi.org/10.1113/jphysiol.2001.013134 CrossRefGoogle Scholar
  35. Yu SY, Jang Y, Paik D, et al., 2015. Nmdmc overexpression extends Drosophila lifespan and reduces levels of mitochondrial reactive oxygen species. Biochem Biophys Res Commun, 465(4):845–850. https://doi.org/10.1016/j.bbrc.2015.08.098 CrossRefGoogle Scholar
  36. Yuana Y, Sturk A, Nieuwland R, 2013. Extracellular vesicles in physiological and pathological conditions. Blood Rev, 27(1): 31–39. https://doi.org/10.1016/j.blre.2012.12.002 CrossRefGoogle Scholar
  37. Zhao HT, Kalivendi S, Zhang H, et al., 2003. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med, 34(11):1359–1368. https://doi.org/10.1016/S0891-5849(03)00142-4 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
  2. 2.Zhejiang Hospital of Traditional Chinese MedicineZhejiang Chinese Medical UniversityHangzhouChina
  3. 3.Institute of Biochemistry, College of Life SciencesZhejiang UniversityHangzhouChina

Personalised recommendations