Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 19, Issue 8, pp 581–595 | Cite as

Transcriptional and translational responses of rapeseed leaves to red and blue lights at the rosette stage

  • Sheng-xin Chang
  • Chu Pu
  • Rong-zhan Guan
  • Min Pu
  • Zhi-gang Xu
Article

Abstract

Under different red (R):blue (B) photon flux ratios, the growth performance of rapeseed (Brassica napus L.) is significantly different. Rapeseed under high R ratios shows shade response, while under high B ratios it shows sun-type morphology. Rapeseed under monochromatic red or blue light is seriously stressed. Transcriptomic and proteomic methods were used to analyze the metabolic pathway change of rapeseed (cv. “Zhongshuang 11”) leaves under different R:B photon flux ratios (including 100R:0B%, 75R:25B%, 25R:75B%, and 0R:100B%), based on digital gene expression (DGE) and two-dimensional gel electrophoresis (2-DE). For DGE analysis, 2054 differentially expressed transcripts (|log2(fold change)|≥1, q<0.005) were detected among the treatments. High R ratios (100R:0B% and 75R:25B%) enhanced the expression of cellular structural components, mainly the cell wall and cell membrane. These components participated in plant epidermis development and anatomical structure morphogenesis. This might be related to the shade response induced by red light. High B ratios (25R:75B% and 0R:100B%) promoted the expression of chloroplast-related components, which might be involved in the formation of sun-type chloroplast induced by blue light. For 2-DE analysis, 37 protein spots showed more than a 2-fold difference in expression among the treatments. Monochromatic light (ML; 100R:0B% and 0R:100B%) stimulated accumulation of proteins associated with antioxidation, photosystem II (PSII), DNA and ribosome repairs, while compound light (CL; 75R:25B% and 25R:75B%) accelerated accumulation of proteins associated with carbohydrate, nucleic acid, amino acid, vitamin, and xanthophyll metabolisms. These findings can be useful in understanding the response mechanisms of rapeseed leaves to different R:B photon flux ratios.

Key words

Brassica napus L. Light emitting diode (LED) light Comparative transcriptome and proteome Leaf morphogenesis Stress response 

红蓝光质下苗期油菜基因和蛋白表达特性的研究

中文概要

目的

研究不同比例红蓝光下苗期油菜表型、转录和蛋白水平的差异。

创新点

利用转录组和蛋白组技术对不同红蓝光质下油菜叶片的分子表达进行检测,并探讨了其与叶片表型响应的关系。

方法

采用数字基因表达谱和双向电泳技术检测红蓝光处理后油菜叶片的基因和蛋白表达水平,并分析处理间的差异。

结论

不同比例红蓝光下,油菜叶片转录组和蛋白组呈系统性变化。高比例红光诱发叶片表皮发育和解剖结构形态建成相关基因的表达,它们可能与高比红光诱发的遮阴应答相关。高比蓝光促进叶绿体相关基因的表达,它们可能与高比蓝光下阳生型叶绿体的形成相关。红蓝单色光诱发胁迫应答相关蛋白的表达,而红蓝复合光促进碳氮代谢和次生代谢相关蛋白的表达。

关键词

油菜 发光二极管光源 转录组和蛋白组 叶片表型 胁迫应答 

CLC number

Q786 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11585_2018_291_MOESM1_ESM.pdf (652 kb)
Transcriptional and translational responses of rapeseed leaves to red and blue lights at the rosette stage
11585_2018_291_MOESM2_ESM.xlsx (391 kb)
Supplementary material, approximately 391 KB.

References

  1. Adamska I, Ohad I, Kloppstech K, 1992. Synthesis of the early light-inducible protein is controlled by blue light and related to light stress. Proc Natl Acad Sci USA, 89(7):2610–2613. https://doi.org/10.1073/pnas.89.7.2610 CrossRefPubMedGoogle Scholar
  2. Anderson MB, Folta K, Warpeha KM, et al., 1999. Blue light-directed destabilization of the pea Lhcb1*4 transcript depends on sequences within the 5' untranslated region. Plant Cell, 11(8):1579–1589. https://doi.org/10.1105/tpc.11.8.1579 PubMedPubMedCentralGoogle Scholar
  3. Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72(1-2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  4. Buschmann C, Meier D, Kleudgen HK, et al., 1978. Regulation of chloroplast development by red and blue light. Photochem Photobiol, 27(2):195–198. https://doi.org/10.1111/j.1751-1097.1978.tb07587.x CrossRefGoogle Scholar
  5. Chang SX, Li CX, Yao XY, et al., 2016. Morphological, photosynthetic, and physiological responses of rapeseed leaf to different combinations of red and blue lights at the rosette stage. Front Plant Sci, 7:1144. https://doi.org/10.3389/fpls.2016.01144 Google Scholar
  6. Cosgrove DJ, 2000. Loosening of plant cell walls by expansins. Nature, 407(6802):321–326. https://doi.org/10.1038/35030000 CrossRefPubMedGoogle Scholar
  7. Fan J, Chen CX, Yu QB, et al., 2011. Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by “Candidatus Liberibacter asiaticus”. Physiol Plantarum, 143(3):235–245. https://doi.org/10.1111/j.1399-3054.2011.01502.x CrossRefGoogle Scholar
  8. Gorecka KM, Konopka-Postupolska D, Hennig J, et al., 2005. Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochem Biophys Res Commun, 336(3):868–875. https://doi.org/10.1016/j.bbrc.2005.08.181 CrossRefPubMedGoogle Scholar
  9. Hayashi S, Ishii T, Matsunaga T, et al., 2008. The glycerophosphoryl diester phosphodiesterase-like proteins SHV3 and its homologs play important roles in cell wall organization. Plant Cell Physiol, 49(10):1522–1535. https://doi.org/10.1093/pcp/pcn120 CrossRefPubMedGoogle Scholar
  10. Hejátko J, Ryu H, Kim GT, et al., 2009. The histidine kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 regulate vascular tissue development in Arabidopsis shoots. Plant Cell, 21(7):2008–2021. https://doi.org/10.1105/tpc.109.066696 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hernández R, Kubota C, 2016. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ Exp Bot, 121:66–74. https://doi.org/10.1016/j.envexpbot.2015.04.001 CrossRefGoogle Scholar
  12. Hogewoning SW, Trouwborst G, Maljaars H, et al., 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot, 61(11):3107–3117. https://doi.org/10.1093/jxb/erq132 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Inoue SI, Takemiya A, Shimazaki KI, 2010. Phototropin signaling and stomatal opening as a model case. Curr Opin Plant Biol, 13(5):587–593. https://doi.org/10.1016/j.pbi.2010.09.002 CrossRefPubMedGoogle Scholar
  14. Jungandreas A, Schellenberger Costa B, Jakob T, et al., 2014. The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern. PLoS ONE, 9(8):e99727. https://doi.org/10.1371/journal.pone.0099727 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kasukabe Y, He LX, Nada K, et al., 2004. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol, 45(6):712–722. https://doi.org/10.1093/pcp/pch083 CrossRefPubMedGoogle Scholar
  16. Kim DS, Cho DS, Park WM, et al., 2006. Proteomic patternbased analyses of light responses in Arabidopsis thaliana wild-type and photoreceptor mutants. Proteomics, 6(10):3040–3049. https://doi.org/10.1002/pmic.200500670 CrossRefPubMedGoogle Scholar
  17. Lan P, Li WF, Schmidt W, 2012. Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Mol Cell Proteomics, 11(11):1156–1166. https://doi.org/10.1074/mcp.M112.020461 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Li JG, Li G, Wang HY, et al., 2011. Phytochrome signaling mechanisms. Arabidopsis Book, 9:e0148. https://doi.org/10.1199/tab.0148 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lichtenthaler HK, Buschmann C, Rahmsdorf U, 1980. The importance of blue light for the development of sun-type chloroplasts. In: Senger H (Ed.), The Blue Light Syndrome. Springer, Berlin, Heidelberg, p.485–494. https://doi.org/10.1007/978-3-642-67648-2_45
  20. Liu HT, Liu B, Zhao CX, et al., 2011. The action mechanisms of plant cryptochromes. Trends Plant Sci, 16(12):684–691. https://doi.org/10.1016/j.tplants.2011.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liu JH, Wang W, Wu H, et al., 2015. Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci, 6(827):827. https://doi.org/10.3389/fpls.2015.00827 PubMedPubMedCentralGoogle Scholar
  22. Ma LG, Li JM, Qu LJ, et al., 2001. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell, 13(12):2589–2607. https://doi.org/10.1105/tpc.010229 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Machado CR,Costa de Oliveira RL, Boiteux S, et al., 1996. Thi1, a thiamine biosynthetic gene in Arabidopsis thaliana, complements bacterial defects in DNA repair. Plant Mol Biol, 31(3):585–593. https://doi.org/10.1007/BF00042231 CrossRefPubMedGoogle Scholar
  24. Marshall SDG, Putterill JJ, Plummer KM, et al., 2003. The carboxylesterase gene family from Arabidopsis thaliana. J Mol Evol, 57(5):487–500. https://doi.org/10.1007/s00239-003-2492-8 CrossRefPubMedGoogle Scholar
  25. Novikova GV, Nosov AV, Stepanchenko NS, et al., 2013. Plant cell proliferation and its regulators. Russ J Plant Physiol, 60(4):500–506. https://doi.org/10.1134/S1021443713040109 CrossRefGoogle Scholar
  26. Peterman TK, Ohol YM, McReynolds LJ, et al., 2004. Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol, 136(2):3080–3094. https://doi.org/10.1104/pp.104.045369 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pfannschmidt T, 2003. Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci, 8(1):33–41. https://doi.org/10.1016/S1360-1385(02)00005-5 CrossRefPubMedGoogle Scholar
  28. Pi JB, Zhang Q, Fu JQ, et al., 2010. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol Appl Pharm, 244(1):77–83. https://doi.org/10.1016/j.taap.2009.05.025 CrossRefGoogle Scholar
  29. Qi JN, Yu SC, Zhang FL, et al., 2010. Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Mol Biol Rep, 28(4):597–604. https://doi.org/10.1007/s11105-010-0185-1 CrossRefGoogle Scholar
  30. Roig-Villanova I, Bou J, Sorin C, et al., 2006. Identification of primary target genes of phytochrome signaling. Early transcriptional control during shade avoidance responses in Arabidopsis. Plant Physiol, 141(1):85–96. https://doi.org/10.1104/pp.105.076331 PubMedGoogle Scholar
  31. Rose JK,Saladié M, Catalá C, 2004. The plot thickens: new perspectives of primary cell wall modification. Curr Opin Plant Biol, 7(3):296–301. https://doi.org/10.1016/j.pbi.2004.03.013 CrossRefPubMedGoogle Scholar
  32. Roxas VP, Lodhi SA, Garrett DK, et al., 2000. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol, 41(11):1229–1234. https://doi.org/10.1093/pcp/pcd051 CrossRefPubMedGoogle Scholar
  33. Schuerger AC, Brown CS, Stryjewski EC, 1997. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann Bot, 79(3):273–282. https://doi.org/10.1006/anbo.1996.0341 CrossRefPubMedGoogle Scholar
  34. Singh DK, McNellis TW, 2011. Fibrillin protein function: the tip of the iceberg? Trends Plant Sci, 16(8):432–441. https://doi.org/10.1016/j.tplants.2011.03.014 CrossRefPubMedGoogle Scholar
  35. Tanaka H, Watanabe M, Sasabe M, et al., 2007. Novel receptorlike kinase ALE2 controls shoot development by specifying epidermis in Arabidopsis. Development, 134(9):1643–1652. https://doi.org/10.1242/dev.003533 CrossRefPubMedGoogle Scholar
  36. Tausz M, Šircelj H, Grill D, 2004. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot, 55(404):1955–1962. https://doi.org/10.1093/jxb/erh194 CrossRefPubMedGoogle Scholar
  37. Tsukaya H, 2002. Leaf development. Arabidopsis Book, 1:e0072. https://doi.org/10.1199/tab.0072 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tsukaya H, 2006. Mechanism of leaf-shape determination. Ann Rev Plant Biol, 57:477–496. https://doi.org/10.1146/annurev.arplant.57.032905.105320 CrossRefGoogle Scholar
  39. Ulm R, Nagy F, 2005. Signalling and gene regulation in response to ultraviolet light. Curr Opin Plant Biol, 8(5):477–482. https://doi.org/10.1016/j.pbi.2005.07.004 CrossRefPubMedGoogle Scholar
  40. Wang W, Vignani R, Scali M, et al., 2006. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis, 27(13):2782–2786. https://doi.org/10.1002/elps.200500722 CrossRefPubMedGoogle Scholar
  41. Wang WJ, Wang FJ, Sun XT, et al., 2013. Comparison of transcriptome under red and blue light culture of Saccharina japonica (Phaeophyceae). Planta, 237(4):1123–1133. https://doi.org/10.1007/s00425-012-1831-7 CrossRefPubMedGoogle Scholar
  42. Wang XW, Wang HZ, Wang J, et al., 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 43(10):1035–1039. https://doi.org/10.1038/ng.919 CrossRefPubMedGoogle Scholar
  43. Yang Y, Sulpice R, Himmelbach A, et al., 2006. Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proc Natl Acad Sci USA, 103(15):6061–6066. https://doi.org/10.1073/pnas.0501720103 CrossRefPubMedGoogle Scholar
  44. Yang YJ, Li Y, Li X, et al., 2008. Comparative proteomics analysis of light responses in cryptochrome1–304 and Columbia wild-type 4 of Arabidopsis thaliana. Acta Biochim Biophys Sin, 40(1):27–37. https://doi.org/10.1111/j.1745-7270.2008.00367.x CrossRefPubMedGoogle Scholar
  45. Youssef A, Laizet Y, Block MA, et al., 2010. Plant lipidassociated fibrillin proteins condition jasmonate production under photosynthetic stress. Plant J, 61(3):436–445. https://doi.org/10.1111/j.1365-313X.2009.04067.x CrossRefPubMedGoogle Scholar
  46. Zhuang WB, Gao ZH, Wang LJ, et al., 2013. Comparative proteomic and transcriptomic approaches to address the active role of GA4 in Japanese apricot flower bud dormancy release. J Exp Bot, 64(16):4953–4966. https://doi.org/10.1093/jxb/ert284 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of AgricultureNanjing Agricultural UniversityNanjingChina
  2. 2.Lumlux Corp.SuzhouChina

Personalised recommendations